QUALTECH PRODUCTS INDUSTRY

QUALTECH PRODUCTS INDUSTRY

Real values for our customers & clients

USA: +1 720 897 7818
UK: +44 161 408 5668
AU: +61 2 8091 0618

Email: [email protected]

QUALTECH PRODUCTS INDUSTRY
2186 South Holly Street, Denver, Colorado 80222, USA

Open in Google Maps
  • Welcome
  • Instruments
    • Viscosity Measurement
      • Flow Cups
        • ISO Flow Cup ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Ford Cups ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Zahn Cup ASTM D1084 ASTM D4212 BS EN 535
        • Japanese IWATA Cup
        • DIN Cup DIN 53211
        • Pressure Cup ISO 2811-4 BS 3900-A22
        • Stands & Holders for Viscosity Flow Cups
      • Rotational Viscometer
        • Handheld Viscometer
        • Portable Viscometer
        • Digital Rotational Viscometer
        • Spindle Viscometer with Touchscreen
        • Krebs Stormer Viscometer
        • High Temperature Viscometer
        • Cone & Plate Viscometer
        • Viscosity Bath
        • Laray Viscometer
        • Flour & Starch Viscometer
    • Appearance Testing
      • Gloss
        • Gloss Meter
        • Gloss Meter with Micro Lens
        • Haze Glossmeter
        • Glossmeter 45° Angle
        • Glossmeter 75° Angle
        • Pocket Glossmeter
        • Gloss Meter with Touchscreen
        • Color Reader & Gloss Meter
        • Inline Glossmeter
        • Mini Glossmeter
      • Transparency Haze Clarity
        • Haze Meter
        • Handheld Turbidity Meter
        • Desktop Turbidity Meter
      • Color
        • Handheld Color Reader
        • Portable Color Reader
        • Benchtop Color Reader
        • Handheld Spectrophotometer
        • Desktop Spectrophotometer
        • Color Assessment Cabinet
        • Color Proofing Station
        • Gardner Color Comparator
        • Lovibond Tintometer
        • RAL Color Cards
        • Pantone Color Cards
        • Handheld Color Reader for Liquids
        • Handheld Colorimeter for Powders
        • Handheld Colorimeter for Pharmaceuticals
        • Color Matching Software
      • Whiteness
        • Handheld Whiteness Meter
        • Portable Whiteness Meter
        • ISO Desktop Whiteness Meter
        • CIE D65 Whiteness Meter
        • Porosity Measurement Device
      • Thickness
        • Wet Film Thickness Gauges
        • Wheel Wet Film Thickness Gauge
        • Coating Thickness Gauge
        • Ultrasonic Thickness Gauge
        • Paint Inspection Gauge
        • Banana Thickness Gauge
        • Caliper
        • Sheet Thickness Meter
      • Reflection Opacity
        • Reflectance Meter
        • Handheld Spectral Reflectance Meter
        • Desktop Reflectance Meter
        • Digital Cryptometer
        • Infrared Reflectance Meter
        • Light Transmission Meter
        • Glass & Lens Light Transmission Meter
        • Light Transmittance Meter 365nm & 550nm & 850nm & 940nm
        • UV Light Transmittance Meter
        • IR Light Transmittance Meter
        • Blue Light Transmittance Meter
        • Single Angle Retroreflectometer
        • Multi Angle Retroreflectometer
    • Application Series
      • Dip Coater
      • Automatic Vacuum Film Applicator
      • Automatic Film Applicator with Stainless Steel & Glass Film Application Table
      • Leveling Tester
      • SAG Tester
      • Film Applicators
      • Wire Bar Coater
      • Paint Spray Gun
      • Spin Coater
      • Vacuum Table for Film Application
      • Drawdown Surface
      • Checkerboard Charts
      • Nitrogen Dip Coater
      • Multi-Layer Dip Coater
      • Constant Temperature Dip Coater
      • Casterguide for Cube Film Applicator
      • Automatic Substrate Spray Chamber
      • Water Wash Spray Booth
    • Moisture Measurement
      • Karl Fischer Titrator
      • Coulometric Karl Fischer Titrator
      • Digital Moisture Meter
      • Moisture Analyzer
      • Rotary Evaporator
    • Physical Properties Testing
      • Fineness of Grind
        • Fineness of Grind Gauges
        • Electric Fineness of Grind Gauges
      • Drying Time
        • Drying Time Recorder
        • Automatic Drying Time Recorder
        • Through-Dry State Tester
      • Density
        • Density Cups
        • Gas Pycnometer
        • Handheld Density Meter
        • Benchtop Density Meter
        • Handheld Densitometer
        • Transmission Densitometer
        • Optical Transmission Densitometer
        • Buoyancy Density Meter
        • Scott Volumeter
        • Hall Flowmeter
        • Carney Flowmeter
        • Bulk Density Meter ASTM D1895 Method A
        • Bulk Density Meter ASTM D1895 Method B
        • Bulk Density Meter ISO R60
        • Bulk Density Meter
        • Apparent Density Volumeter
        • Tap Density Meter
        • Powder Angle of Repose
        • Powder Characteristics Tester
        • Automatic Filter Cleanliness Analysis System
        • Automatic True Density Pycnometer
        • Gustavsson Flowmeter
        • Arnold Density Meter
        • Bulk Density Meter ISO Method R60
        • Bulk Density Meter ASTM D1895 Method A
        • Bulk Density Meter ASTM D1895 Method B
        • Bulk Density Meter ASTM D1895 Method C
        • Automatic Density Meter for Liquids
        • Density Meter for Liquids
        • Acoustic Comfort Cabinet
      • Conductivity & pH
        • Pocket pH Meter
        • Handheld pH Meter
        • Portable pH Meter
        • Desktop pH Meter
        • Handheld Conductivity Meter
        • Portable Conductivity Meter
        • Desktop Conductivity & pH Meter
        • PH Electrode
        • Ion Selective Electrode
        • Dissolved Oxygen Electrode
        • Reference Electrode
        • Conductivity Electrode
        • Metal Electrode
        • Temperature Electrode
      • Refraction
        • Handheld Refractometer
        • Portable Digital Refractometer
        • Automatic Digital Refractometer
        • Digital Refractometer
        • Analog Refractometer
      • Roughness
        • Surface Roughness Meter
      • Temperature & Humidity
        • MFFT Bar with Touchscreen
        • Humidity Meter
        • Laboratory Thermometer
        • Infrared Thermometer
        • Closed Cup Flash Point Tester
        • Low Temperature Closed Cup Flash Point Tester
        • Automatic Closed Cup Flash Point Tester
        • Abel Flash Point Tester
        • Open Cup Flash Point Tester
        • Low Temperature Open Cup Flash Point Tester
        • Softening Point Tester
        • Melting Point Apparatus
        • Melting Point Tester with Video Recording
        • Melting Point Tester
        • Microscope Melting Point Tester
        • Thermal Optical Analyzer
        • Heat Deflection Tester
      • Tension Measurement
        • Surface Tension Meter Du Noüy Ring
        • Surface Tension Meter Wilhelmy Plate
      • Particle Size Measurement
        • Particle Size Analyzer
        • Laboratory Sieve Shaker
    • Mechanical Properties Testing
      • Flexibility & Deformation Test Instruments
        • T-Bend Tester
        • Cylindrical Mandrel Bend Tester
        • Conical Mandrel Bend Tester
        • Cupping Tester
        • Ball Punch Tester
        • Compression Tester
        • Edge Crush Tester
        • Paper Burst Strength Tester
        • Cardboard Burst Strength Tester
        • Textile Burst Strength Tester
        • Box Compression Tester
        • Roll Crush Tester
        • Paint Film Flexibility Tester
        • Putty Flexibility Tester Sample Substrates
        • Automatic Bottle Cap Torque Tester
      • Impact Test Instruments
        • DuPont Impact Tester
        • Heavy Duty Impact Tester
        • Universal Impact Tester
        • Falling Dart Impact Tester
        • Wood Panel Impact Tester
      • Adhesion Test Instruments
        • Adhesion Cross Cut Tester
        • Single Blade Adhesion Cross Cut Tester
        • Adhesion Cross Cut Ruler Test Kit
        • Adhesion X Cut Test Kit
        • Automatic Paint Adhesion Cross Cut Tester
        • Fully-Automatic Pull-Off Adhesion Tester
        • Automatic Pull-Off Adhesion Tester
        • Peel Adhesion Tester
        • COF Coefficient Friction Tester
        • Peel Tester for Adhesives
        • Loop Tack Tester
        • Adhesion Peel Tester
      • Hardness Test Instruments
        • Pencil Hardness Tester
        • Desktop Pencil Hardness Tester
        • Motorized Pencil Hardness Tester
        • Dur-O-Test Hardness Pen
        • Pendulum Hardness Tester
        • Automatic Scratch Tester
        • Automatic Mar Tester
        • Scratching Tool
        • Leeb Rebound Hardness Tester
        • Portable Leeb Hardness Tester
        • Handheld Hardness Tester
        • Digital Pocket Hardness Tester
        • Portable Rockwell & Brinell Hardness Tester
        • Handheld Rockwell Hardness Tester
        • Small Load Brinell Hardness Tester
        • Brinell Hardness Tester with Touchscreen
        • Brinell Hardness Tester
        • Multi Hardness Tester
        • Rockwell Hardness Tester with Touchscreen
        • Rockwell Hardness Tester
        • Rockwell Superficial Hardness Tester
        • Large Sample Rockwell Hardness Tester
        • Rockwell Plastic Hardness Tester
        • Vickers Hardness Tester
        • Small Load Vickers Hardness Tester
        • Knoop Hardness Tester
        • Micro Hardness Tester with Touchscreen
        • Micro Hardness Tester
        • Buchholz Indentation Tester
      • Abrasion Test Instruments
        • Wet Abrasion Scrub Tester
        • Advanced Wet Abrasion Scrub Tester
        • Single Platform Rotary Abrasion Tester
        • Dual Platform Rotary Abrasion Tester
        • Linear Abrasion Tester
        • Manual Crockmeter
        • Electric Crockmeter
        • Electric Rotary Crockmeter
        • Rotary Crockmeter
        • Leather Circular Crockmeter
        • Gakushin Crockmeter
        • Martindale Abrasion and Pilling Tester
        • Wyzenbeek Oscillatory CylinderTester
        • RCA Abrasion Tester
        • Falling Sand Abrasion Tester
        • 9-Step Chromatic Transference Scale AATCC
        • AATCC Grey Scale Color Test Cards
        • Advanced Abrasion Tester
      • Tensile Test Systems
        • Single Column Tensile Machine
        • Dual Column Tensile Machine
      • Brittleness Test Systems
        • Brittleness Test System
        • Brittleness Tester
      • Color Fastness Wash Test
        • Colorfastness to Washing Tester
    • Climatic Testing Instruments
      • Weathering Test Equipment
        • Desktop UV Weathering Test Chamber
        • UV-Light Weathering Test Chamber
        • Xenon Weathering Test Chamber
        • Xenon Test Chamber with Water Filter System
        • Xenon Arc Weathering Test Chamber
      • Corrosion Control
        • Salt Spray Chamber
        • Salt Fog Test Chamber
        • Advanced Salt Spray Test Chamber
      • Temperature and Humidity
        • Laboratory Oven
        • Explosion Proof Laboratory Oven
        • Muffle Kiln Furnace
        • Laboratory Vacuum Oven
        • Vertical Light Chamber
        • Low Temperature Bath
        • Laboratory Water Bath
        • Laboratory Oil Bath
        • Climate Test Chamber
        • Dry Bath Incubator
      • UV Curing
        • UV Curing Equipment
        • UV Light Radiometer
    • Mixing Dispersion Milling
      • Electric Laboratory Mixer
      • Electric Laboratory Stirrer
      • Automatic Lab Mixer with Timer
      • Laboratory High Speed Disperser
      • Laboratory All-Purpose Disperser
      • Laboratory Disperser with Timer
      • Laboratory Automatic Disperser with Timer & Temperature Measurement
      • Explosion Proof Laboratory High Shear Disperser & Mixer
      • Laboratory Basket Mill
      • Twin-Arm Paint Can Shaker
      • Automatic Paint Shaker
      • Pneumatic Paint Shaker
      • Paint Dispenser
      • Automatic Paint Dispenser
      • Automatic Orbital Shaker
      • Laboratory Plate Shaker
      • Large Orbital Shaker
      • Laboratory Vacuum Disperser
      • Advanced Vacuum Disperser
      • Automatic Powder Mill
      • Desktop Powder Mill
      • Three Roll Mill
      • Muller Grinder
      • Laboratory Horizontal Sand Mill
      • Laboratory Pneumatic Mixer
      • Pneumatic Mixer with Lift
      • Nano Mixer
      • Laboratory Vacuum High Speed Disperser
      • Laboratory Emulsifier
      • Laboratory V Blender
    • Printing Ink Properties Testing
      • MEK Solvent Rub Abrasion Tester
      • Advanced MEK Solvent Abrasion Tester
      • Ink Proofing Press
      • Printing Ink Proofer
    • Laboratory Test Instruments
      • Laboratory Weighing Scales
      • Laboratory Weighing Scales with Color Touchscreen
      • Schopper Riegler Tester
      • Hydraulic Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • Dropping Point Tester
      • Dropping Point Tester ASTM D2265
      • Automatic Dropping Point Tester ASTM D2265
      • Bench Scales
      • Platform Scales
      • Gas Permeability Tester
      • Water Vapor Permeability Tester
    • Scientific Sample Preparation
      • Scientific Textile Sample Preparation
        • GSM Sample Cutter
    • Textile Test Instruments
      • MIE Abrasion Tester
      • Universal Wear Abrasion Tester
    • Environmental Test Instruments
      • Handheld Air Quality Meter
      • Ambient Air Sampler
    • Plastic Test Instruments
      • Charpy Izod Impact Tester
      • Charpy Impact Tester
      • Izod Impact Tester
      • Melt Flow Index Tester
    • Paper Test Instruments
      • Schopper Riegler Tester
      • Hydraulic Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • ISO 534 Caliper
      • ISO 534 Automatic Paper Thickness Meter
      • Paper Burst Strength Tester
      • Cardboard Burst Strength Tester
    • Concrete Test Instruments
      • Concrete Rebound Hammer
      • Digital Concrete Rebound Hammer
  • Equipment
    • Industrial Production Dispersers
      • Industrial Disperser
      • Industrial Twin-Shaft Disperser
      • Industrial Multi-Shaft Disperser
      • Industrial Vacuum Disperser
      • High Viscosity Disperser
      • In-Tank Disperser
      • Pressurized In-Tank Disperser
      • Vacuum In-Tank Disperser
      • Dispersion Blades
    • Industrial Production Mixers & Agitators
      • In-Tank Mixer
    • Industrial Production Blenders
      • V Blender
      • Double Cone Blender
    • Industrial Production Mills & Grinders
      • Industrial Basket Mill
      • Three Roll Mill
  • Chemicals
  • Contact Us
  • About Us
FREEQUOTE
  • Home
  • Science & Research
  • Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

by QUALTECH PRODUCTS INDUSTRY Science & Research / Friday, 13 June 2025 / Published in Science & Research

The European Pharmacopoeia (Ph. Eur.) Standard Funnel Method 2.9.36 for Powder Flow represents a critical test method used across pharmaceutical manufacturing to evaluate how well powder materials flow. When you work with pharmaceutical powders in production settings, understanding flow properties helps predict how these materials will behave during processes like tableting, capsule filling, and bulk transportation. This standardized method provides quantitative measurements that directly impact product quality, manufacturing efficiency, and ultimately patient safety by ensuring consistent medication dosing.

Laboratory scene showing a funnel measuring powder flow into a container with scientific equipment in the background.

The test works by measuring how quickly a specific amount of powder flows through a standardized funnel with a specific opening size. You can use the results to categorize powders based on their flowability, from “excellent” to “very poor” flowing materials. This classification helps formulation scientists select appropriate excipients, determine if flow enhancers are needed, and design manufacturing processes that accommodate the specific flow characteristics of their powder blends.

Unlike other powder flow methods such as angle of repose or compressibility index tests, the funnel method simulates real-world processing conditions that powders encounter during manufacturing. You can easily compare different powder batches using this test, which makes it valuable for both quality control and formulation development stages of pharmaceutical production. The method’s standardization across Europe ensures consistent evaluation criteria regardless of where testing occurs.

Key Takeaways

  • The Ph. Eur. Standard Funnel Method 2.9.36 quantifies powder flow properties that directly impact pharmaceutical manufacturing quality and efficiency.
  • You can use test results to categorize powders, select appropriate excipients, and design manufacturing processes that accommodate specific flow characteristics.
  • The standardized nature of the test allows for consistent evaluation of powder flow across different batches and manufacturing facilities throughout Europe.

Overview of Ph. Eur. Standard Funnel Method 2.9.36

Laboratory scene showing a standard funnel with powder flowing through it into a container, illustrating the measurement of powder flow.

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing processes. This standardized method helps evaluate how well powdered substances move through processing equipment.

Definition and Scope

The Standard Funnel Method 2.9.36 is a test procedure in the European Pharmacopoeia that measures the flowability of powders used in pharmaceutical production. It evaluates how easily powder flows through a funnel with standard dimensions under controlled conditions. The test applies to dry powders and granules intended for various pharmaceutical applications.

This method specifically examines the time it takes for a powder sample to flow through the funnel, providing data on flow properties. Poor flow can cause manufacturing problems like inconsistent tablet weights or capsule filling issues.

The scope covers substances for pharmaceutical use, including active ingredients and excipients. It helps determine if materials are suitable for specific manufacturing processes.

Historical Context and Standardization

The Standard Funnel Method evolved from earlier industrial powder testing approaches but was standardized specifically for pharmaceutical applications. In the 1980s and 1990s, regulatory bodies recognized the need for consistent methods to evaluate powder properties.

The European Pharmacopoeia Commission formalized this test to ensure reliable quality control across the pharmaceutical industry. This standardization addressed previous inconsistencies in testing methods between manufacturers.

Over time, the method has been refined through multiple supplement editions of the European Pharmacopoeia. As noted in the search results, the 6.0 Supplement 6.3 included important recommendations on quality standards for pharmaceutical substances.

Alignment With Other Regulatory Guidelines

The Ph. Eur. Standard Funnel Method 2.9.36 aligns with broader pharmaceutical quality guidelines. It complements other powder characterization methods like angle of repose, compressibility index, and bulk density testing.

The test is recognized by other major pharmacopoeias including the United States Pharmacopeia (USP) and Japanese Pharmacopoeia (JP). This alignment helps pharmaceutical manufacturers meet global regulatory requirements with standardized testing protocols.

Results from this method can be used to classify powders based on their flow properties. These classifications help determine if substances need modification for specific uses, as mentioned in the search results about substances being labeled for “intended for a specific use.”

You can use these test results to make decisions about processing parameters or whether flow enhancers are needed.

Specific Use and Primary Purpose

A laboratory scene showing a funnel with powder flowing through it into a container, observed by a person in a lab coat.

The Ph. Eur. Standard Funnel Method 2.9.36 serves as a fundamental tool for measuring powder flow properties in pharmaceutical manufacturing and quality control. This standardized approach helps ensure consistency in powder behavior evaluation across the pharmaceutical industry.

Designed Evaluation Criteria

The method specifically evaluates the flowability of pharmaceutical powders by measuring the time it takes a specific amount of powder to flow through a standardized funnel. This flow time directly correlates with powder flowability characteristics.

You can use this test to determine if your powder will flow properly in manufacturing equipment. The method also measures the angle of repose – the steepest angle at which a powder forms a stable pile.

A smaller angle indicates better flow properties, while a larger angle suggests poor flowability. These measurements help you predict how powders will behave during tableting, capsule filling, and other pharmaceutical manufacturing processes.

Key Applications in Industry

In pharmaceutical manufacturing, the Funnel Method helps you determine if your powder formulation is suitable for high-speed production lines. Poor flowing powders can cause weight variations in tablets or capsules, leading to dosage inconsistencies.

This test is particularly valuable when:

  • Selecting excipients for direct compression formulations
  • Troubleshooting manufacturing issues related to powder flow
  • Developing new powder-based products
  • Establishing quality control specifications

The method applies to various pharmaceutical materials including active ingredients, excipients, and finished powder blends. Quality control departments regularly use this test to verify batch-to-batch consistency and ensure manufacturing processes remain reliable and reproducible.

Materials and Products Assessed

A scientist in a lab coat monitors powder flowing through a funnel into a container as part of a laboratory test on powder flow characteristics.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow testing is applicable to a specific range of powder materials commonly found in pharmaceutical applications. This test method provides valuable insights into powder flowability, which affects numerous manufacturing processes.

Suitable Powder Types

The Standard Funnel Method is particularly suitable for free-flowing pharmaceutical powders. These include excipients like microcrystalline cellulose, lactose, and dicalcium phosphate. Active pharmaceutical ingredients (APIs) with good flow properties can also be assessed effectively.

Granular materials used in tablet and capsule formulations are ideal candidates for this method. Many direct compression blends benefit from this assessment before tableting.

You’ll find this method especially valuable for testing:

  • Diluents: Lactose, mannitol, sorbitol
  • Disintegrants: Sodium starch glycolate, croscarmellose sodium
  • Glidants: Colloidal silicon dioxide, talc
  • Lubricants: Magnesium stearate, stearic acid

Typical Sample Characteristics

Samples tested via the Standard Funnel Method typically have particle sizes ranging from 100-1000 μm. The method works best with dry, non-cohesive powders that flow freely under gravity.

Your test samples should ideally have:

  • Moisture content below 3%
  • Bulk density between 0.3-1.5 g/cm³
  • Minimal electrostatic properties
  • Regular particle morphology

Powders should be properly conditioned at controlled temperature and humidity prior to testing. Most samples require 50-100g of material to obtain reliable results.

The particle size distribution should be relatively uniform to avoid segregation during testing.

Limitations on Material Use

You should avoid using this method for highly cohesive or very fine powders (below 50 μm). These materials often experience flow problems like bridging in the funnel.

The test is not suitable for:

  • Hygroscopic materials that absorb moisture during testing
  • Powders with extreme static charges
  • Materials with needle-like particles
  • Very dense powders (>2.0 g/cm³)
  • Highly compressible materials

Temperature and humidity significantly affect results, so materials sensitive to environmental conditions require special consideration.

The method doesn’t work well with wet granulations or materials with moisture content above 5%.

General Principles of Powder Flow Testing

Laboratory setup showing powder flowing through a transparent funnel into a container, with scientific instruments nearby on a clean bench.

Powder flow testing evaluates how easily powder materials move and flow under various conditions. These tests provide critical data for industries handling powders in manufacturing, storage, and processing operations.

Fundamentals of Flowability

Flowability refers to a powder’s ability to flow in a predictable and reliable manner. This property affects how powders behave during processing, packaging, and dispensing operations.

When examining powder flow, you need to consider both cohesive forces (particles sticking together) and gravitational forces. The balance between these determines how well a powder will flow.

Good powder flow is characterized by consistent movement without bridging, ratholing, or segregation. Poor flowing powders often show erratic behavior and can cause production interruptions.

Several classification systems exist to categorize powders based on flowability – from free-flowing to very cohesive. These classifications help you select appropriate handling equipment and processing parameters.

Parameters Measured

Flow rate measures how quickly powder passes through an opening and is often expressed in g/s or ml/s. This directly impacts production speed and efficiency.

Angle of repose quantifies the steepest angle at which powder remains stable without flowing. Lower angles (≤30°) indicate better flowability, while higher angles (≥45°) suggest poor flow properties.

Compressibility index and Hausner ratio evaluate how powder density changes under pressure. These calculations use both bulk and tapped densities to assess flow characteristics.

Key Flow Parameters:

  • Flow rate
  • Angle of repose
  • Bulk density
  • Tapped density
  • Compressibility
  • Cohesion
  • Wall friction

Shear testing measures the internal friction of powder samples, providing detailed information about flow behavior under various stress conditions.

Influencing Factors on Powder Flow

Particle size significantly impacts flow – generally, larger particles (>100μm) flow better than smaller ones (<50μm). Very fine powders often exhibit poor flow due to stronger cohesive forces.

Particle shape affects how particles interact. Spherical particles typically flow better than irregular, needle-shaped, or flaky particles that can interlock and resist movement.

Moisture content can dramatically alter powder flow. Even small increases in moisture can create liquid bridges between particles, reducing flowability.

Environmental conditions like humidity, temperature, and storage time influence flow properties. Powders may absorb moisture from humid air, leading to caking and reduced flowability.

Electrostatic charges, especially in dry environments, can cause particles to repel or attract each other, disrupting normal flow patterns.

Interpretation of Results and Industry Implications

Laboratory scene showing a funnel apparatus measuring powder flow into a container, surrounded by scientific tools and data charts on flow rates.

The data from the Ph. Eur. Standard Funnel Method provides critical insights that directly impact manufacturing decisions and product quality. Understanding these results helps you optimize formulations and processing parameters.

Analyzing Powder Flow Data

Flow rate measurements obtained through the funnel method are typically expressed in seconds or grams per second. Lower flow times indicate better flowability, while higher values suggest poor flow properties.

You should always compare your results against established acceptance criteria for your specific material. A common approach is creating flowability classifications:

  • Excellent flow: < 10 seconds
  • Good flow: 10-15 seconds
  • Fair flow: 16-20 seconds
  • Poor flow: > 20 seconds

Variability in results is equally important. High standard deviations between measurements often indicate inconsistent powder properties that may cause processing issues.

Impact on Product Quality and Manufacturing

Poor powder flow directly affects tablet weight variation, content uniformity, and dissolution profiles in pharmaceutical products. When powders flow inconsistently, you’ll experience challenges with die filling in tablet presses.

Manufacturing efficiency decreases with poorly flowing powders. Production speeds must be reduced to maintain quality, and equipment modifications may be necessary. This translates to higher production costs and reduced output.

You can use funnel test results to guide formulation decisions. Adding flow enhancers like colloidal silicon dioxide (0.2-0.5%) often improves flowability when test results are poor. Equipment selection also depends on these results—high-shear mixers may be needed for powders with poor flow properties.

Representative Use Cases and Examples

Laboratory setup showing a funnel with powder flowing into a container, illustrating a powder flow measurement process.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow has practical applications across various industries. Its standardized approach makes it valuable for quality control and material characterization.

Application for Pharmaceutical Powders

In pharmaceutical manufacturing, the funnel method helps evaluate flow properties of active pharmaceutical ingredients (APIs) and excipients. You can use this test to determine if a powder will flow consistently through tablet press hoppers during production.

For example, when formulating a direct compression tablet, you would test lactose and microcrystalline cellulose excipients to ensure proper flow characteristics. Poor flow can cause weight variations in final dosage forms.

The test also helps you determine:

  • Whether granulation is needed to improve powder flowability
  • If glidants (like silica) should be added to your formulation
  • How environmental conditions might affect your powder’s performance

Quality control departments routinely use this test to verify batch-to-batch consistency of raw materials.

Other Industrial Examples

Beyond pharmaceuticals, the funnel method finds applications in food processing, cosmetics, and chemical industries. Food manufacturers use it to test ingredients like flour, sugar, and powdered flavors.

In cement and construction materials testing, you can apply this method to evaluate the flow properties of fine aggregates and additives. This helps ensure consistent concrete quality.

Cosmetic producers rely on this test for:

  • Evaluating face powders and foundations
  • Testing raw materials for production
  • Validating manufacturing processes

The method is particularly valuable when you need to compare different powder lots or suppliers. For instance, a paint manufacturer might test various pigment powders to ensure they’ll flow properly through production equipment.

Best Practices for Implementation

A laboratory technician pouring powder into a standard funnel apparatus to measure powder flow, with scientific instruments and a clean lab environment in the background.

Implementing the Ph. Eur. Standard Funnel Method 2.9.36 correctly ensures reliable powder flow measurements for pharmaceutical applications. Attention to detail during setup and execution is critical for meaningful results.

Sample Preparation Recommendations

Material Conditioning: You should store powder samples in controlled environments (20-25°C, 40-60% relative humidity) for at least 24 hours before testing to ensure equilibration.

Quantity Preparation: Prepare at least 100g of sample for each test run. Use a standardized method to mix bulk samples, avoiding segregation of particles by size or density.

Particle Size Considerations: For materials with larger particles (>2mm), you may need to adjust the funnel diameter. Note any modifications in your test report.

Moisture Control: Check moisture content before testing. Even small changes can significantly affect flow properties, especially for hygroscopic materials.

Pre-test Handling: Minimize vibration or compression during transfer to prevent altering the powder’s natural flow characteristics.

Ensuring Reproducibility and Reliability

Equipment Verification: You should calibrate your funnel dimensions against reference standards quarterly. The outlet opening must maintain precise specifications (10.0±0.01mm).

Systematic Testing Protocol: Conduct at least three replicate measurements for each sample. Discard results with >5% variation and investigate the cause.

Environmental Controls: Maintain consistent testing conditions. Temperature fluctuations of even 3°C can alter flow results by up to 10% for some formulations.

Reference Standards: Include a reference standard powder (like microcrystalline cellulose) in your testing sequence to verify system performance.

Documentation: Record all testing parameters including:

  • Room temperature and humidity
  • Sample preparation details
  • Any deviations from standard protocol
  • Observations of unusual flow behavior

Comparison With Alternative Powder Flow Methods

The Ph. Eur. Standard Funnel Method 2.9.36 is one of several techniques used to evaluate powder flowability in pharmaceutical and other industries. Different methods provide complementary data that can help you select the most appropriate manufacturing processes.

Contrast With ASTM Methods

ASTM D6393 (Bulk Solids Characterization) differs from the Ph. Eur. method by measuring multiple flow properties rather than just flow rate. This comprehensive approach helps you predict powder behavior under various processing conditions.

ASTM B213 specifically addresses metal powders, using a calibrated funnel with standardized dimensions that may differ from the Ph. Eur. glass funnel. This method is tailored for metallurgical applications rather than pharmaceuticals.

ASTM D7891 employs a powder rheometer to measure dynamic flow properties. Unlike the static measurement of the funnel method, rheometers can simulate different processing forces and conditions.

Advantages and Limitations

The Ph. Eur. funnel method offers simplicity and repeatability with minimal equipment requirements. You can quickly assess basic flow characteristics without extensive training or complex data interpretation.

However, this method has notable limitations. It only works for relatively free-flowing powders and cannot evaluate cohesive materials that won’t flow through the funnel at all.

The funnel method provides a single data point (flow time) rather than comprehensive flow profiles. For complete characterization, you should combine it with additional tests like angle of repose or compressibility index.

Environmental factors such as humidity and static electricity can significantly affect results, requiring careful control of testing conditions for meaningful comparisons.

Frequently Asked Questions

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing. This test provides valuable data about material behavior in production environments.

What is the purpose of the Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow in assessing material properties?

The Ph. Eur. Standard Funnel Method 2.9.36 evaluates how easily pharmaceutical powders flow through a standardized funnel. This test measures the time it takes for a specific amount of powder to flow through the funnel’s orifice.

The method helps determine if a powder will flow consistently during manufacturing processes like tableting or capsule filling. Poor flowing materials can cause weight variations and dosing problems in final products.

The test serves as an early indicator of potential processing issues, allowing formulators to modify compositions or processing conditions before full-scale production.

How does the Ph. Eur. Standard Funnel Method 2.9.36 contribute to the quality control in pharmaceutical manufacturing?

The Standard Funnel Method provides a reproducible way to assess batch-to-batch consistency of pharmaceutical materials. By establishing acceptable flow time ranges, manufacturers can quickly identify when raw materials deviate from specifications.

Quality control teams use these measurements to approve or reject incoming materials before they enter production. This prevents costly manufacturing delays and potential product failures.

The method helps maintain compliance with regulatory requirements by ensuring consistent product performance across batches. Documentation of flow properties becomes part of a product’s quality history.

Which types of powders or granular materials are typically tested using the Standard Funnel Method 2.9.36, and why is it significant?

Pharmaceutical excipients like lactose, microcrystalline cellulose, and starch are commonly tested with this method. These materials form the bulk of many tablet and capsule formulations.

Active pharmaceutical ingredients (APIs) with sufficient quantity per dose may also undergo testing. Understanding API flow properties helps determine appropriate manufacturing methods.

Granulated materials produced during wet or dry granulation processes benefit from this testing. The method helps verify if granulation improved flow characteristics as intended.

What fundamental principles govern the operation of the Ph. Eur. Powder Flow method, and how do they relate to material behavior?

Gravity is the primary force driving powder flow through the funnel. The method measures how effectively particles overcome friction and cohesive forces when moving under gravity’s influence.

Particle size, shape, density, and surface characteristics all affect flow time results. Smaller, irregularly shaped particles typically flow more slowly due to increased surface area and cohesion.

Moisture content significantly impacts flow behavior by creating liquid bridges between particles. The method indirectly assesses how these physical properties combine to affect overall flowability.

Can you describe how the results of the Ph. Eur. Standard Funnel Method 2.9.36 are interpreted, and what implications they have for product development?

Results are typically reported as flow time in seconds for a specified powder mass. Shorter flow times indicate better flowing materials that will likely process more efficiently.

Comparative analysis between materials helps formulators select excipients with complementary properties. Blending a poorly flowing API with free-flowing excipients may improve overall mixture performance.

Flow time trends can signal potential stability issues when tracked over a product’s shelf life. Increasing flow times might indicate moisture uptake or particle agglomeration requiring formulation adjustments.

How does the Ph. Eur. Standard Funnel Method 2.9.36 compare to other powder flowability testing methods in terms of accuracy and application?

The Funnel Method offers simplicity and speed compared to more complex techniques like shear cell testing. However, it provides less detailed information about fundamental powder properties.

Unlike angle of repose measurements, which evaluate static powder behavior, the Funnel Method assesses dynamic flow under gravity. This better mimics conditions in feeding hoppers and fill systems.

The method complements rather than replaces techniques like Carr’s Index or Hausner Ratio. For comprehensive material characterization, formulators typically employ multiple test methods to develop a complete flowability profile.

About QUALTECH PRODUCTS INDUSTRY Science & Research

What you can read next

MPIF Standard 01 Method for Sampling Metal Powders: Essential Testing Protocol for Quality Assurance in Powder Metallurgy Manufacturing
ASTM D5125-10(2020)e1 Standard Test Method for Viscosity: Essential Guide for Paint Flow Measurement in Quality Control
ISO 4324:1977 – Measurement of the Angle of Repose: Evaluating Material Flow Properties in Bulk Solids Handling

GET A FREE QUOTE

Contact Us – We would like to hear from you

Get information now on products, technical support, customer service, sales, public relations, professional services, and partners. You can also provide feedback on our website.
Please kindly complete this form. One of our specialists will reply to your enquiry shortly. Alternatively contact us via the company details in the USA, in Australia or in the UK.

    Please note we respect your privacy and keep your details strictly confidential.

    ASTM
    ANSI
    bsi
    IEC
    AATCC
    TÜV
    ISO
    DIN

    © 1978 - 2025 QUALTECH PRODUCTS INDUSTRY Terms of Use Terms & Conditions Cookies Contact Us

    TOP
    This website uses cookies to improve your experience, however, we respect your privacy and the cookies only collect anonymous data. We respect your privacy and you can opt-out, if you like.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT
    en_USEnglish
    da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês en_USEnglish
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português