QUALTECH PRODUCTS INDUSTRY

QUALTECH PRODUCTS INDUSTRY

Real values for our customers & clients

USA: +1 720 897 7818
UK: +44 161 408 5668
AU: +61 2 8091 0618

Email: [email protected]

QUALTECH PRODUCTS INDUSTRY
2186 South Holly Street, Denver, Colorado 80222, USA

Open in Google Maps
  • Welcome
  • Instruments
    • Viscosity Measurement
      • Flow Cups
        • ISO Flow Cup ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Ford Cups ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Zahn Cup ASTM D1084 ASTM D4212 BS EN 535
        • Japanese IWATA Cup
        • DIN Cup DIN 53211
        • Pressure Cup ISO 2811-4 BS 3900-A22
        • Stands & Holders for Viscosity Flow Cups
      • Rotational Viscometer
        • Handheld Viscometer
        • Portable Viscometer
        • Digital Rotational Viscometer
        • Spindle Viscometer with Touchscreen
        • Krebs Stormer Viscometer
        • High Temperature Viscometer
        • Cone & Plate Viscometer
        • Viscosity Bath
        • Laray Viscometer
        • Flour & Starch Viscometer
    • Appearance Testing
      • Gloss
        • Gloss Meter
        • Gloss Meter with Micro Lens
        • Haze Glossmeter
        • Glossmeter 45° Angle
        • Glossmeter 75° Angle
        • Pocket Glossmeter
        • Gloss Meter with Touchscreen
        • Color Reader & Gloss Meter
        • Inline Glossmeter
        • Mini Glossmeter
      • Transparency Haze Clarity
        • Haze Meter
        • Handheld Turbidity Meter
        • Desktop Turbidity Meter
      • Color
        • Handheld Color Reader
        • Portable Color Reader
        • Benchtop Color Reader
        • Handheld Spectrophotometer
        • Desktop Spectrophotometer
        • Color Assessment Cabinet
        • Color Proofing Station
        • Gardner Color Comparator
        • Lovibond Tintometer
        • RAL Color Cards
        • Pantone Color Cards
        • Handheld Color Reader for Liquids
        • Handheld Colorimeter for Powders
        • Handheld Colorimeter for Pharmaceuticals
        • Color Matching Software
      • Whiteness
        • Handheld Whiteness Meter
        • Portable Whiteness Meter
        • ISO Desktop Whiteness Meter
        • CIE D65 Whiteness Meter
        • Porosity Measurement Device
      • Thickness
        • Wet Film Thickness Gauges
        • Wheel Wet Film Thickness Gauge
        • Coating Thickness Gauge
        • Ultrasonic Thickness Gauge
        • Paint Inspection Gauge
        • Banana Thickness Gauge
        • Caliper
        • Sheet Thickness Meter
      • Reflection Opacity
        • Reflectance Meter
        • Handheld Spectral Reflectance Meter
        • Desktop Reflectance Meter
        • Digital Cryptometer
        • Infrared Reflectance Meter
        • Light Transmission Meter
        • Glass & Lens Light Transmission Meter
        • Light Transmittance Meter 365nm & 550nm & 850nm & 940nm
        • UV Light Transmittance Meter
        • IR Light Transmittance Meter
        • Blue Light Transmittance Meter
        • Single Angle Retroreflectometer
        • Multi Angle Retroreflectometer
    • Application Series
      • Dip Coater
      • Automatic Vacuum Film Applicator
      • Automatic Film Applicator with Stainless Steel & Glass Film Application Table
      • Leveling Tester
      • SAG Tester
      • Film Applicators
      • Wire Bar Coater
      • Paint Spray Gun
      • Spin Coater
      • Vacuum Table for Film Application
      • Drawdown Surface
      • Checkerboard Charts
      • Nitrogen Dip Coater
      • Multi-Layer Dip Coater
      • Constant Temperature Dip Coater
      • Casterguide for Cube Film Applicator
      • Automatic Substrate Spray Chamber
      • Water Wash Spray Booth
    • Moisture Measurement
      • Karl Fischer Titrator
      • Coulometric Karl Fischer Titrator
      • Digital Moisture Meter
      • Moisture Analyzer
      • Rotary Evaporator
    • Physical Properties Testing
      • Fineness of Grind
        • Fineness of Grind Gauges
        • Electric Fineness of Grind Gauges
      • Drying Time
        • Drying Time Recorder
        • Automatic Drying Time Recorder
        • Through-Dry State Tester
      • Density
        • Density Cups
        • Gas Pycnometer
        • Handheld Density Meter
        • Benchtop Density Meter
        • Handheld Densitometer
        • Transmission Densitometer
        • Optical Transmission Densitometer
        • Buoyancy Density Meter
        • Scott Volumeter
        • Hall Flowmeter
        • Carney Flowmeter
        • Bulk Density Meter ASTM D1895 Method A
        • Bulk Density Meter ASTM D1895 Method B
        • Bulk Density Meter ISO R60
        • Bulk Density Meter
        • Apparent Density Volumeter
        • Tap Density Meter
        • Powder Angle of Repose
        • Powder Characteristics Tester
        • Automatic Filter Cleanliness Analysis System
        • Automatic True Density Pycnometer
        • Gustavsson Flowmeter
        • Arnold Density Meter
        • Bulk Density Meter ISO Method R60
        • Bulk Density Meter ASTM D1895 Method A
        • Bulk Density Meter ASTM D1895 Method B
        • Bulk Density Meter ASTM D1895 Method C
        • Automatic Density Meter for Liquids
        • Density Meter for Liquids
        • Acoustic Comfort Cabinet
      • Conductivity & pH
        • Pocket pH Meter
        • Handheld pH Meter
        • Portable pH Meter
        • Desktop pH Meter
        • Handheld Conductivity Meter
        • Portable Conductivity Meter
        • Desktop Conductivity & pH Meter
        • PH Electrode
        • Ion Selective Electrode
        • Dissolved Oxygen Electrode
        • Reference Electrode
        • Conductivity Electrode
        • Metal Electrode
        • Temperature Electrode
      • Refraction
        • Handheld Refractometer
        • Portable Digital Refractometer
        • Automatic Digital Refractometer
        • Digital Refractometer
        • Analog Refractometer
      • Roughness
        • Surface Roughness Meter
      • Temperature & Humidity
        • MFFT Bar with Touchscreen
        • Humidity Meter
        • Laboratory Thermometer
        • Infrared Thermometer
        • Closed Cup Flash Point Tester
        • Low Temperature Closed Cup Flash Point Tester
        • Automatic Closed Cup Flash Point Tester
        • Abel Flash Point Tester
        • Open Cup Flash Point Tester
        • Low Temperature Open Cup Flash Point Tester
        • Softening Point Tester
        • Melting Point Apparatus
        • Melting Point Tester with Video Recording
        • Melting Point Tester
        • Microscope Melting Point Tester
        • Thermal Optical Analyzer
        • Heat Deflection Tester
      • Tension Measurement
        • Surface Tension Meter Du Noüy Ring
        • Surface Tension Meter Wilhelmy Plate
      • Particle Size Measurement
        • Particle Size Analyzer
        • Laboratory Sieve Shaker
    • Mechanical Properties Testing
      • Flexibility & Deformation Test Instruments
        • T-Bend Tester
        • Cylindrical Mandrel Bend Tester
        • Conical Mandrel Bend Tester
        • Cupping Tester
        • Ball Punch Tester
        • Compression Tester
        • Edge Crush Tester
        • Paper Burst Strength Tester
        • Cardboard Burst Strength Tester
        • Textile Burst Strength Tester
        • Box Compression Tester
        • Roll Crush Tester
        • Paint Film Flexibility Tester
        • Putty Flexibility Tester Sample Substrates
        • Automatic Bottle Cap Torque Tester
      • Impact Test Instruments
        • DuPont Impact Tester
        • Heavy Duty Impact Tester
        • Universal Impact Tester
        • Falling Dart Impact Tester
        • Wood Panel Impact Tester
      • Adhesion Test Instruments
        • Adhesion Cross Cut Tester
        • Single Blade Adhesion Cross Cut Tester
        • Adhesion Cross Cut Ruler Test Kit
        • Adhesion X Cut Test Kit
        • Automatic Paint Adhesion Cross Cut Tester
        • Fully-Automatic Pull-Off Adhesion Tester
        • Automatic Pull-Off Adhesion Tester
        • Peel Adhesion Tester
        • COF Coefficient Friction Tester
        • Peel Tester for Adhesives
        • Loop Tack Tester
        • Adhesion Peel Tester
      • Hardness Test Instruments
        • Pencil Hardness Tester
        • Desktop Pencil Hardness Tester
        • Motorized Pencil Hardness Tester
        • Dur-O-Test Hardness Pen
        • Pendulum Hardness Tester
        • Automatic Scratch Tester
        • Automatic Mar Tester
        • Scratching Tool
        • Leeb Rebound Hardness Tester
        • Portable Leeb Hardness Tester
        • Handheld Hardness Tester
        • Digital Pocket Hardness Tester
        • Portable Rockwell & Brinell Hardness Tester
        • Handheld Rockwell Hardness Tester
        • Small Load Brinell Hardness Tester
        • Brinell Hardness Tester with Touchscreen
        • Brinell Hardness Tester
        • Multi Hardness Tester
        • Rockwell Hardness Tester with Touchscreen
        • Rockwell Hardness Tester
        • Rockwell Superficial Hardness Tester
        • Large Sample Rockwell Hardness Tester
        • Rockwell Plastic Hardness Tester
        • Vickers Hardness Tester
        • Small Load Vickers Hardness Tester
        • Knoop Hardness Tester
        • Micro Hardness Tester with Touchscreen
        • Micro Hardness Tester
        • Buchholz Indentation Tester
      • Abrasion Test Instruments
        • Wet Abrasion Scrub Tester
        • Advanced Wet Abrasion Scrub Tester
        • Single Platform Rotary Abrasion Tester
        • Dual Platform Rotary Abrasion Tester
        • Linear Abrasion Tester
        • Manual Crockmeter
        • Electric Crockmeter
        • Electric Rotary Crockmeter
        • Rotary Crockmeter
        • Leather Circular Crockmeter
        • Gakushin Crockmeter
        • Martindale Abrasion and Pilling Tester
        • Wyzenbeek Oscillatory CylinderTester
        • RCA Abrasion Tester
        • Falling Sand Abrasion Tester
        • 9-Step Chromatic Transference Scale AATCC
        • AATCC Grey Scale Color Test Cards
        • Advanced Abrasion Tester
      • Tensile Test Systems
        • Single Column Tensile Machine
        • Dual Column Tensile Machine
      • Brittleness Test Systems
        • Brittleness Test System
        • Brittleness Tester
      • Color Fastness Wash Test
        • Colorfastness to Washing Tester
    • Climatic Testing Instruments
      • Weathering Test Equipment
        • Desktop UV Weathering Test Chamber
        • UV-Light Weathering Test Chamber
        • Xenon Weathering Test Chamber
        • Xenon Test Chamber with Water Filter System
        • Xenon Arc Weathering Test Chamber
      • Corrosion Control
        • Salt Spray Chamber
        • Salt Fog Test Chamber
        • Advanced Salt Spray Test Chamber
      • Temperature and Humidity
        • Laboratory Oven
        • Explosion Proof Laboratory Oven
        • Muffle Kiln Furnace
        • Laboratory Vacuum Oven
        • Vertical Light Chamber
        • Low Temperature Bath
        • Laboratory Water Bath
        • Laboratory Oil Bath
        • Climate Test Chamber
        • Dry Bath Incubator
      • UV Curing
        • UV Curing Equipment
        • UV Light Radiometer
    • Mixing Dispersion Milling
      • Electric Laboratory Mixer
      • Electric Laboratory Stirrer
      • Automatic Lab Mixer with Timer
      • Laboratory High Speed Disperser
      • Laboratory All-Purpose Disperser
      • Laboratory Disperser with Timer
      • Laboratory Automatic Disperser with Timer & Temperature Measurement
      • Explosion Proof Laboratory High Shear Disperser & Mixer
      • Laboratory Basket Mill
      • Twin-Arm Paint Can Shaker
      • Automatic Paint Shaker
      • Pneumatic Paint Shaker
      • Paint Dispenser
      • Automatic Paint Dispenser
      • Automatic Orbital Shaker
      • Laboratory Plate Shaker
      • Large Orbital Shaker
      • Laboratory Vacuum Disperser
      • Advanced Vacuum Disperser
      • Automatic Powder Mill
      • Desktop Powder Mill
      • Three Roll Mill
      • Muller Grinder
      • Laboratory Horizontal Sand Mill
      • Laboratory Pneumatic Mixer
      • Pneumatic Mixer with Lift
      • Nano Mixer
      • Laboratory Vacuum High Speed Disperser
      • Laboratory Emulsifier
      • Laboratory V Blender
    • Printing Ink Properties Testing
      • MEK Solvent Rub Abrasion Tester
      • Advanced MEK Solvent Abrasion Tester
      • Ink Proofing Press
      • Printing Ink Proofer
    • Laboratory Test Instruments
      • Laboratory Weighing Scales
      • Laboratory Weighing Scales with Color Touchscreen
      • Schopper Riegler Tester
      • Hydraulic Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • Dropping Point Tester
      • Dropping Point Tester ASTM D2265
      • Automatic Dropping Point Tester ASTM D2265
      • Bench Scales
      • Platform Scales
      • Gas Permeability Tester
      • Water Vapor Permeability Tester
    • Scientific Sample Preparation
      • Scientific Textile Sample Preparation
        • GSM Sample Cutter
    • Textile Test Instruments
      • MIE Abrasion Tester
      • Universal Wear Abrasion Tester
    • Environmental Test Instruments
      • Handheld Air Quality Meter
      • Ambient Air Sampler
    • Plastic Test Instruments
      • Charpy Izod Impact Tester
      • Charpy Impact Tester
      • Izod Impact Tester
      • Melt Flow Index Tester
    • Paper Test Instruments
      • Schopper Riegler Tester
      • Hydraulic Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • ISO 534 Caliper
      • ISO 534 Automatic Paper Thickness Meter
      • Paper Burst Strength Tester
      • Cardboard Burst Strength Tester
    • Concrete Test Instruments
      • Concrete Rebound Hammer
      • Digital Concrete Rebound Hammer
  • Equipment
    • Industrial Production Dispersers
      • Industrial Disperser
      • Industrial Twin-Shaft Disperser
      • Industrial Multi-Shaft Disperser
      • Industrial Vacuum Disperser
      • High Viscosity Disperser
      • In-Tank Disperser
      • Pressurized In-Tank Disperser
      • Vacuum In-Tank Disperser
      • Dispersion Blades
    • Industrial Production Mixers & Agitators
      • In-Tank Mixer
    • Industrial Production Blenders
      • V Blender
      • Double Cone Blender
    • Industrial Production Mills & Grinders
      • Industrial Basket Mill
      • Three Roll Mill
  • Chemicals
  • Contact Us
  • About Us
FREEQUOTE
  • Home
  • ISO Test Standards
  • ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

by QUALTECH PRODUCTS INDUSTRY Science & Research / Saturday, 21 June 2025 / Published in ISO Test Standards, Science and Research

ISO 13468-2 is a specialized test method that measures how much light passes through plastic materials. This dual-beam approach helps manufacturers understand the optical properties of their plastic products, which is crucial for applications where clarity matters. The test provides valuable data about a material’s total luminous transmittance, which directly impacts product quality in industries like automotive, packaging, and electronics.

A laboratory scene showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

When plastic products need to be transparent or translucent, this test becomes essential. It works by comparing the intensity of light that passes through a plastic sample to a reference beam. You can use this method to evaluate various plastic materials including films, sheets, and molded parts. Unlike similar methods, ISO 13468-2’s dual-beam system compensates for light source fluctuations, making it more accurate.

Key Takeaways

  • ISO 13468-2 measures how much light passes through plastic materials using a dual-beam system for greater accuracy.
  • The test is vital for quality control in industries requiring transparent plastics like packaging, electronics, and automotive components.
  • Proper implementation of this standard helps you ensure consistent optical properties and compare different plastic materials objectively.

Overview of ISO 13468‑2 and Its Significance

A laboratory scene showing a dual-beam spectrophotometer analyzing a transparent plastic sample with light beams passing through it, alongside charts representing data analysis.

ISO 13468-2 provides a standardized method for determining total luminous transmittance of transparent plastics using a double-beam instrument. This test standard is essential for quality control and material specification in industries where optical clarity of plastics is critical.

Purpose of the Test Standard

ISO 13468-2 was developed to provide a reliable way to measure how much light passes through transparent plastic materials. The standard specifically focuses on the visible spectrum region, which matters most for optical applications.

This test helps manufacturers ensure their plastic products meet required transparency levels. When you need to verify if a plastic material will allow sufficient light transmission for applications like window glazing, protective screens, or optical components, this standard provides the answer.

The results from this test are expressed as a percentage of total luminous transmittance, giving you a clear quantitative value to compare against requirements or specifications.

Scope and Applicability

ISO 13468-2 applies to planar transparent plastics and is particularly useful for materials between 1mm and 10mm thick. The standard is designed for testing using double-beam instruments, which offer improved accuracy over single-beam methods.

You can use this test method for:

  • Acrylic sheets
  • Polycarbonate panels
  • Transparent polymer films
  • Other clear plastic materials

The test is valuable in industries such as:

  • Automotive (for windows and light covers)
  • Construction (for glazing materials)
  • Electronics (for display screens)
  • Packaging (for clear containers)

This standard helps you assess optical quality and ensure consistency across production batches.

Comparison with ISO 13468-1

ISO 13468-2 differs from ISO 13468-1 primarily in the instrumentation used. While ISO 13468-1 uses a single-beam instrument, ISO 13468-2 employs a double-beam instrument that provides several advantages.

The double-beam approach offers:

  • Higher accuracy: By simultaneously measuring the reference and sample beams
  • Better stability: Less affected by light source fluctuations
  • Improved reliability: Reduces errors from environmental variations

You’ll find that double-beam measurements are less susceptible to drift over time. This makes ISO 13468-2 preferable when higher precision is required for quality control or research applications.

However, ISO 13468-1 might be sufficient for routine testing where ultimate precision isn’t critical, as single-beam equipment is typically less expensive and simpler to operate.

General Principles of Total Luminous Transmittance Measurement

A laboratory setup showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

The measurement of total luminous transmittance involves several key optical principles that help determine how much light passes through transparent plastic materials. These measurements are critical for quality control and product specifications in various industries.

Definition of Total Luminous Transmittance

Total luminous transmittance (τv) represents the ratio of transmitted luminous flux to incident luminous flux through a transparent material. Simply put, it measures how much visible light passes through a plastic sample.

This property is expressed as a percentage or decimal value between 0 and 1. A value of 100% indicates perfect transparency where all incident light passes through the material.

The measurement accounts for both direct transmission and diffuse transmission. Direct transmission occurs when light passes straight through without changing direction. Diffuse transmission happens when light scatters while passing through the material.

For plastic materials, this property helps determine optical clarity and is essential for applications requiring specific light transmission characteristics.

Fundamental Optical Concepts

When light interacts with transparent plastics, several phenomena occur simultaneously. Light can be transmitted, reflected, absorbed, or scattered by the material.

Transmission follows Snell’s Law, where light bends at the interface between different materials based on their refractive indices. This principle is fundamental to understanding how light travels through plastics.

Key optical factors affecting transmittance:

  • Material thickness
  • Surface roughness
  • Internal structure
  • Presence of additives or colorants
  • Wavelength of incident light

The human eye perceives light differently across the visible spectrum (380-780 nm). ISO 13468 accounts for this by using CIE Standard Illuminant D65 and the photopic response of the human eye to weight measurements.

Role of Dual‑Beam Spectrophotometry

Dual-beam spectrophotometry provides advantages over single-beam methods described in ISO 13468-1. This technique uses two light paths: one passing through the sample and one reference path.

The dual-beam approach automatically compensates for fluctuations in light source intensity, detector sensitivity, and environmental conditions. This results in more accurate and reliable measurements.

The spectrophotometer splits light into wavelengths across the visible spectrum. It then compares the intensity of light through both paths to determine transmittance at each wavelength.

Benefits of dual-beam systems:

  • Higher accuracy
  • Better repeatability
  • Reduced measurement time
  • Automatic compensation for instrument drift

These systems are particularly valuable for quality control applications where precise measurements are required for product certification and specification compliance.

Specific Use and Intended Purpose

A laboratory scene showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

ISO 13468-2 provides a standardized method for measuring how much light passes through transparent plastic materials. This test helps manufacturers ensure quality control and select appropriate materials for specific applications where light transmission is important.

Evaluation Objectives

ISO 13468-2 measures the total luminous transmittance of transparent plastics using a double-beam spectrophotometer. This test determines what percentage of visible light passes through a plastic sample.

Unlike single-beam methods (ISO 13468-1), the double-beam approach offers higher accuracy by comparing the test sample against a reference simultaneously.

The standard works best with colorless or faintly tinted plastics up to 10mm thick. Thicker samples can be tested if the instrument allows, but results may not be comparable to standard measurements.

The test specifically excludes plastics containing fluorescent materials, as these would affect measurement accuracy.

Industry Applications

This standard is vital in industries requiring transparent materials with specific light transmission properties. Automotive manufacturers use it to test windshields and light covers for proper visibility and safety compliance.

Electronics producers rely on it for display screens and protective covers. The packaging industry needs it to verify that clear containers meet appearance and protection requirements.

Medical device makers use this test to ensure proper light transmission through diagnostic equipment, protective shields, and containers.

Construction companies apply this standard when selecting transparent materials for windows, skylights, and light fixtures. The test helps verify materials will provide expected natural lighting levels.

Benefits in Material Selection

Using ISO 13468-2 helps you make better decisions when choosing transparent plastics. You can objectively compare different materials based on their light transmission properties rather than visual inspection alone.

The test identifies subtle differences between similar-looking materials that might perform differently in your application. This prevents costly mistakes in material selection.

When developing new products, you can use test results to balance light transmission with other properties like impact resistance or UV protection.

The standard also helps you verify supplier claims about material properties. You can confirm that the materials you receive consistently meet your specifications for light transmission.

Materials and Products Covered by ISO 13468‑2

A laboratory scene showing a dual-beam instrument measuring light passing through a clear plastic sheet to analyze its luminous transmittance.

ISO 13468-2 specifically addresses transparent and substantially colorless plastic materials for which total luminous transmittance measurements are required. This standard provides a reliable method for evaluating light transmission properties using a double-beam scanning spectrophotometer.

Applicable Types of Plastic Sheets and Films

ISO 13468-2 applies to planar transparent plastics that allow light to pass through with minimal distortion. This includes acrylic sheets (PMMA), polycarbonate panels, polyethylene terephthalate (PET) films, and other clear thermoplastics.

The standard is particularly useful for testing optical-grade polymers used in displays, windows, and covers. Materials like clear polystyrene, transparent polyvinyl chloride (PVC), and polypropylene films commonly undergo this testing.

You can apply this standard to both rigid plastic sheets and flexible films, as long as they maintain planar geometry during measurement.

Sample Characteristics

Samples tested under ISO 13468-2 must be transparent or substantially colorless. The material should have minimal internal scattering to provide accurate transmittance values.

The standard works best with materials that have:

  • Uniform thickness throughout the test area
  • Planar surfaces without significant warping
  • Limited surface defects that might scatter light
  • No fluorescent additives (materials containing fluorescent compounds cannot be tested)

Sample preparation typically requires clean, dust-free specimens with minimal surface scratches or imperfections. Your samples should be properly conditioned according to relevant standards before testing.

Industries Utilizing This Standard

The automotive industry relies on ISO 13468-2 when developing and testing transparent plastics for headlamp covers, windows, and displays. Light transmission properties directly impact safety and functionality.

Building and construction sectors use this standard to evaluate glazing materials, skylights, and transparent building elements. The optical clarity and light transmission are critical for energy efficiency.

Electronics manufacturers apply these tests to screen protectors, display covers, and optical components. You’ll find this standard referenced in specifications for:

  • Consumer electronics
  • Medical device displays
  • Optical instruments
  • Lighting fixtures
  • Photovoltaic panel covers

Packaging industries also utilize this standard when developing transparent films and containers that require specific light transmission properties.

Implementation and Best Practices

A scientist in a laboratory using a dual-beam spectrophotometer to test transparent plastic samples for light transmission, with technical equipment and charts in the background.

Proper implementation of ISO 13468-2 requires attention to sample preparation, environmental factors, and careful technique to ensure reliable results when measuring total luminous transmittance of transparent plastics.

Optimizing Sample Preparation

Sample preparation is critical for accurate measurements. Clean your specimens thoroughly with a lint-free cloth to remove any dust, fingerprints, or contaminants that could affect light transmission.

When cutting samples, avoid creating stress marks or scratches that might scatter light. A sharp cutting tool is essential to create clean edges.

For best results, samples should have parallel surfaces and uniform thickness. Ideally, prepare specimens between 1 mm and 10 mm thick, though thicker samples can be measured if your instrument allows.

Let specimens acclimate to the testing environment for at least 2 hours before testing to avoid temperature-related distortions.

Environmental Considerations

Temperature and humidity can significantly impact test results. Maintain a controlled laboratory environment of 23°C ± 2°C and 50% ± 5% relative humidity as specified in ISO 291.

Shield the testing area from direct sunlight and other bright light sources that might interfere with measurements.

Vibration can affect instrument stability, so place your spectrophotometer on a vibration-free surface.

Dust particles can scatter light and alter readings. Regularly clean the instrument and testing area to minimize contamination.

Keep the laboratory free from airborne contaminants that might settle on samples during testing.

Ensuring Accuracy and Repeatability

Calibrate your double-beam spectrophotometer regularly using certified reference materials. This ensures your baseline measurements remain consistent over time.

Take multiple readings at different points on each specimen to account for any material inconsistencies. A minimum of three measurements is recommended.

Position samples consistently in the instrument holder for each test. Even slight variations in placement can affect results.

Keep detailed records of all testing parameters including:

  • Sample thickness
  • Environmental conditions
  • Instrument settings
  • Calibration dates

Compare your results with those from ISO 13468-1 (single-beam method) periodically as a cross-check. Significant differences might indicate instrument issues.

Interpreting and Applying Test Results

A scientist in a laboratory using a dual-beam spectrophotometer to test the transparency of a plastic sample.

The data collected from ISO 13468-2 testing provides valuable insights into material performance and quality. Proper interpretation of these results is essential for making informed decisions about material selection and product development.

Understanding Result Significance

Total luminous transmittance values obtained through ISO 13468-2 testing directly reflect how much visible light passes through the plastic material. Higher percentages indicate greater transparency, typically desirable for applications requiring optical clarity.

When interpreting results, consider the specific application requirements. For example, a 92% transmittance might be excellent for packaging but insufficient for precision optical components.

Test variability should be accounted for when analyzing results. Factors like specimen thickness, surface quality, and internal haze can influence measurements. Specimens thicker than 10mm can be measured but may not produce results comparable to standard thickness samples.

Remember that this test method applies specifically to transparent or substantially colorless plastics. Even faintly tinted materials can be evaluated, but heavily colored or fluorescent plastics require different testing approaches.

Case Study: Real-World Example

A manufacturer of display covers for electronic devices used ISO 13468-2 testing to compare three polycarbonate formulations. The results showed:

Material Thickness Total Luminous Transmittance
Formula A 2.0mm 89.5%
Formula B 2.0mm 91.2%
Formula C 2.0mm 90.3%

Formula B was selected for production despite its higher cost because the 1.7% improvement in light transmission significantly enhanced display brightness and readability.

The company also established a quality control threshold of 90% minimum transmittance. This benchmark ensured consistent optical performance across production batches. Any material falling below this threshold was rejected or relegated to non-display applications.

Implications for Product Design

Your product design can benefit greatly from understanding total luminous transmittance properties. Higher transmittance values generally correlate with better optical clarity and aesthetics in transparent applications.

Consider establishing minimum transmittance specifications based on your specific product requirements. Medical devices might require 92%+ transmittance, while general consumer goods might accept 85%+.

Material aging can affect transmittance over time. You should test aged samples to predict long-term performance, especially for outdoor applications where UV exposure occurs.

Remember that transmittance is just one property. Balance it with other material characteristics like impact resistance, chemical resistance, and processability when making final material selections.

Double-beam testing per ISO 13468-2 typically provides more accurate results than single-beam methods, particularly for quality-critical applications where precise measurements matter.

Comparison with Related Standards and Methods

A laboratory scene showing scientific equipment testing the light transmission of plastic samples with beams of light passing through transparent sheets.

Understanding how ISO 13468-2 relates to other testing standards helps laboratories select the most appropriate method for their specific application. Different standards offer various advantages depending on the material being tested and the required precision.

Comparison with ASTM Test Methods

ISO 13468-2 shares similarities with ASTM D1003, which measures haze and luminous transmittance of transparent plastics. However, ASTM D1003 uses a different light source and detection system than ISO 13468-2.

While ISO 13468-2 specifically uses a double-beam spectrophotometer, ASTM D1003 can utilize either a hazemeter or spectrophotometer.

Another related standard is ASTM E903, which measures solar transmittance and reflectance. This differs from ISO 13468-2 as it focuses on solar radiation rather than just visible light.

Key Differences:

  • ISO 13468-2: Double-beam instrument, visible light range
  • ASTM D1003: Can use single-beam, measures haze and transmittance
  • ISO 13468-1: Single-beam instrument alternative

Advantages and Limitations

The double-beam system in ISO 13468-2 offers significant advantages over single-beam methods. It measures sample and reference simultaneously, minimizing errors from light source fluctuations.

Advantages:

  • Higher precision for transparent materials
  • Better compensation for instrument drift
  • More accurate for slightly tinted materials
  • Reduced influence of environmental factors

Limitations:

  • Cannot be used for fluorescent materials
  • Specimens thicker than 10mm may produce results that aren’t comparable with standard samples
  • More complex equipment than single-beam methods
  • Potentially higher cost of implementation

You should consider these factors when determining if this standard meets your testing requirements.

Selecting the Appropriate Standard

Your choice between ISO 13468-2 and alternatives should depend on your specific testing needs and available equipment.

Choose ISO 13468-2 when:

  • You need high precision measurements
  • Testing transparent or slightly tinted plastics
  • You have access to a double-beam spectrophotometer
  • Sample thickness is within recommended range (typically ≤10mm)

Select ISO 13468-1 (single-beam alternative) when:

  • Lower precision is acceptable
  • Equipment budget is limited
  • Simplicity of operation is preferred

For materials with significant haze or diffusion properties, ASTM D1003 may be more appropriate as it specifically addresses these characteristics.

Remember that test results between different standards aren’t directly comparable, so consistency in method selection is important for benchmarking purposes.

Frequently Asked Questions

The ISO 13468-2 standard provides crucial guidelines for measuring total luminous transmittance in plastic materials using a dual-beam method. This testing protocol helps manufacturers ensure product quality and performance in various applications.

What is the purpose of the ISO 13468-2 standard in evaluating the total luminous transmittance of plastics?

ISO 13468-2 specifically measures how much light passes through plastic materials using a dual-beam method. This approach allows for precise quantification of a plastic sample’s ability to transmit light.

The standard helps manufacturers determine optical clarity and transparency, which are critical properties for many plastic applications. Products like display screens, window materials, and optical lenses rely on this data to meet performance specifications.

The dual-beam approach provides more accurate results by comparing the sample measurement to a reference beam simultaneously, eliminating many variables that could affect single-beam measurements.

How does the ISO 13468-2 test contribute to quality assurance in industries that utilize plastics?

This test method establishes a consistent way to verify optical properties across production batches. By regularly testing samples, manufacturers can quickly identify deviations in transparency that might indicate process problems.

The quantitative data from ISO 13468-2 testing creates objective pass/fail criteria for product acceptance. This eliminates subjective visual assessments and provides legal documentation of compliance with specifications.

For industries like automotive, electronics, and medical devices, the test confirms materials meet strict transparency requirements for safety and functionality.

Can you elaborate on the types of materials that are typically subject to ISO 13468-2 testing?

Clear or translucent thermoplastics like polycarbonate, acrylic, and PETG are commonly tested with this method. These materials are frequently used in applications where light transmission is essential.

Film products, including packaging materials and protective coverings, undergo ISO 13468-2 testing to ensure consistent optical properties. The test works well for thin materials that require precise optical characterization.

Specialty plastics used in optical components, lighting fixtures, and display technologies also rely on this testing standard. Any plastic where light transmission affects performance can benefit from this evaluation.

Why is the ISO 13468-2 standard considered a critical component in the production and assessment of transparent or translucent plastics?

The standard provides a globally recognized method that ensures consistency across manufacturers and countries. This facilitates international trade and collaboration in plastic production.

ISO 13468-2 testing detects subtle variations in light transmission that might be missed by visual inspection. These variations can significantly impact product performance in critical applications.

The test results help engineers predict how materials will perform in real-world lighting conditions. This predictive capability is essential for designing products with specific optical requirements.

What are the core principles that the ISO 13468-2 test is based on, and why are these principles important?

The dual-beam principle compares light passing through the sample to a reference beam simultaneously. This approach compensates for fluctuations in light source intensity and environmental conditions.

Spectral measurement across visible wavelengths (approximately 380-780nm) ensures comprehensive evaluation of transparency. This range matches human visual perception, making results relevant for applications where visual clarity matters.

The test uses precisely calibrated equipment to ensure reproducibility and accuracy. Standardized testing conditions allow for meaningful comparisons between different materials or production batches.

How do the results of the ISO 13468-2 test impact the development and application of plastic materials in various industries?

Test results guide material selection decisions for specific applications based on quantifiable optical properties. Designers can choose materials with confidence knowing exactly how they will perform optically.

Product development teams use transmittance data to refine formulations and processing methods. Small adjustments to additives or processing temperatures can significantly impact transparency.

Compliance with customer specifications often depends on meeting specific transmittance values. ISO 13468-2 test reports provide documentation for quality certification and customer acceptance.

About QUALTECH PRODUCTS INDUSTRY Science & Research

What you can read next

ASTM A1122 / A1122M-22 Bend Test of Metals with Coating: Essential Evaluation Method for Coating Integrity and Substrate Performance
ISO 2409: Paints and Varnishes — Cross-cut Test: Essential Guide to Evaluating Coating Adhesion in the Finishing Industry
ASTM E290 Guided Bend: A Comprehensive Evaluation Method for Determining Material Ductility in Metallic Applications

GET A FREE QUOTE

Contact Us – We would like to hear from you

Get information now on products, technical support, customer service, sales, public relations, professional services, and partners. You can also provide feedback on our website.
Please kindly complete this form. One of our specialists will reply to your enquiry shortly. Alternatively contact us via the company details in the USA, in Australia or in the UK.

    Please note we respect your privacy and keep your details strictly confidential.

    ASTM
    ANSI
    bsi
    IEC
    AATCC
    TÜV
    ISO
    DIN

    © 1978 - 2025 QUALTECH PRODUCTS INDUSTRY Terms of Use Terms & Conditions Cookies Contact Us

    TOP
    This website uses cookies to improve your experience, however, we respect your privacy and the cookies only collect anonymous data. We respect your privacy and you can opt-out, if you like.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT
    en_USEnglish
    da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês en_USEnglish
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português