QUALTECH PRODUCTS INDUSTRY

QUALTECH PRODUCTS INDUSTRY

Real values for our customers & clients

USA: +1 720 897 7818
UK: +44 161 408 5668
AU: +61 2 8091 0618

Email: [email protected]

QUALTECH PRODUCTS INDUSTRY
2186 South Holly Street, Denver, Colorado 80222, USA

Open in Google Maps
  • Welcome
  • Instruments
    • Viscosity Measurement
      • Flow Cups
        • ISO Flow Cup ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Ford Cups ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Zahn Cup ASTM D1084 ASTM D4212 BS EN 535
        • Japanese IWATA Cup
        • DIN Cup DIN 53211
        • Pressure Cup ISO 2811-4 BS 3900-A22
        • Stands & Holders for Viscosity Flow Cups
      • Rotational Viscometer
        • Handheld Viscometer
        • Portable Viscometer
        • Digital Rotational Viscometer
        • Spindle Viscometer with Touchscreen
        • Krebs Stormer Viscometer
        • High Temperature Viscometer
        • Cone & Plate Viscometer
        • Viscosity Bath
        • Laray Viscometer
        • Flour & Starch Viscometer
    • Appearance Testing
      • Gloss
        • Gloss Meter
        • Gloss Meter with Micro Lens
        • Haze Glossmeter
        • Glossmeter 45° Angle
        • Glossmeter 75° Angle
        • Pocket Glossmeter
        • Gloss Meter with Touchscreen
        • Color Reader & Gloss Meter
        • Inline Glossmeter
        • Mini Glossmeter
      • Transparency Haze Clarity
        • Haze Meter
        • Handheld Turbidity Meter
        • Desktop Turbidity Meter
      • Color
        • Handheld Color Reader
        • Portable Color Reader
        • Benchtop Color Reader
        • Handheld Spectrophotometer
        • Desktop Spectrophotometer
        • Color Assessment Cabinet
        • Color Proofing Station
        • Gardner Color Comparator
        • Lovibond Tintometer
        • RAL Color Cards
        • Pantone Color Cards
        • Handheld Color Reader for Liquids
        • Handheld Colorimeter for Powders
        • Handheld Colorimeter for Pharmaceuticals
        • Color Matching Software
      • Whiteness
        • Handheld Whiteness Meter
        • Portable Whiteness Meter
        • ISO Desktop Whiteness Meter
        • CIE D65 Whiteness Meter
        • Porosity Measurement Device
      • Thickness
        • Wet Film Thickness Gauges
        • Wheel Wet Film Thickness Gauge
        • Coating Thickness Gauge
        • Ultrasonic Thickness Gauge
        • Paint Inspection Gauge
        • Banana Thickness Gauge
        • Caliper
        • Sheet Thickness Meter
      • Reflection Opacity
        • Reflectance Meter
        • Handheld Spectral Reflectance Meter
        • Desktop Reflectance Meter
        • Digital Cryptometer
        • Infrared Reflectance Meter
        • Light Transmission Meter
        • Glass & Lens Light Transmission Meter
        • Light Transmittance Meter 365nm & 550nm & 850nm & 940nm
        • UV Light Transmittance Meter
        • IR Light Transmittance Meter
        • Blue Light Transmittance Meter
        • Single Angle Retroreflectometer
        • Multi Angle Retroreflectometer
    • Application Series
      • Dip Coater
      • Automatic Vacuum Film Applicator
      • Automatic Film Applicator with Stainless Steel & Glass Film Application Table
      • Leveling Tester
      • SAG Tester
      • Film Applicators
      • Wire Bar Coater
      • Paint Spray Gun
      • Spin Coater
      • Vacuum Table for Film Application
      • Drawdown Surface
      • Checkerboard Charts
      • Nitrogen Dip Coater
      • Multi-Layer Dip Coater
      • Constant Temperature Dip Coater
      • Casterguide for Cube Film Applicator
      • Automatic Substrate Spray Chamber
      • Water Wash Spray Booth
    • Moisture Measurement
      • Karl Fischer Titrator
      • Coulometric Karl Fischer Titrator
      • Digital Moisture Meter
      • Moisture Analyzer
      • Rotary Evaporator
    • Physical Properties Testing
      • Fineness of Grind
        • Fineness of Grind Gauges
        • Electric Fineness of Grind Gauges
      • Drying Time
        • Drying Time Recorder
        • Automatic Drying Time Recorder
        • Through-Dry State Tester
      • Density
        • Density Cups
        • Gas Pycnometer
        • Handheld Density Meter
        • Benchtop Density Meter
        • Handheld Densitometer
        • Transmission Densitometer
        • Optical Transmission Densitometer
        • Buoyancy Density Meter
        • Scott Volumeter
        • Hall Flowmeter
        • Carney Flowmeter
        • Bulk Density Meter ASTM D1895 Method A
        • Bulk Density Meter ASTM D1895 Method B
        • Bulk Density Meter ISO R60
        • Bulk Density Meter
        • Apparent Density Volumeter
        • Tap Density Meter
        • Powder Angle of Repose
        • Powder Characteristics Tester
        • Automatic Filter Cleanliness Analysis System
        • Automatic True Density Pycnometer
        • Gustavsson Flowmeter
        • Arnold Density Meter
        • Bulk Density Meter ISO Method R60
        • Bulk Density Meter ASTM D1895 Method A
        • Bulk Density Meter ASTM D1895 Method B
        • Bulk Density Meter ASTM D1895 Method C
        • Automatic Density Meter for Liquids
        • Density Meter for Liquids
        • Acoustic Comfort Cabinet
      • Conductivity & pH
        • Pocket pH Meter
        • Handheld pH Meter
        • Portable pH Meter
        • Desktop pH Meter
        • Handheld Conductivity Meter
        • Portable Conductivity Meter
        • Desktop Conductivity & pH Meter
        • PH Electrode
        • Ion Selective Electrode
        • Dissolved Oxygen Electrode
        • Reference Electrode
        • Conductivity Electrode
        • Metal Electrode
        • Temperature Electrode
      • Refraction
        • Handheld Refractometer
        • Portable Digital Refractometer
        • Automatic Digital Refractometer
        • Digital Refractometer
        • Analog Refractometer
      • Roughness
        • Surface Roughness Meter
      • Temperature & Humidity
        • MFFT Bar with Touchscreen
        • Humidity Meter
        • Laboratory Thermometer
        • Infrared Thermometer
        • Closed Cup Flash Point Tester
        • Low Temperature Closed Cup Flash Point Tester
        • Automatic Closed Cup Flash Point Tester
        • Abel Flash Point Tester
        • Open Cup Flash Point Tester
        • Low Temperature Open Cup Flash Point Tester
        • Softening Point Tester
        • Melting Point Apparatus
        • Melting Point Tester with Video Recording
        • Melting Point Tester
        • Microscope Melting Point Tester
        • Thermal Optical Analyzer
        • Heat Deflection Tester
      • Tension Measurement
        • Surface Tension Meter Du Noüy Ring
        • Surface Tension Meter Wilhelmy Plate
      • Particle Size Measurement
        • Particle Size Analyzer
        • Laboratory Sieve Shaker
    • Mechanical Properties Testing
      • Flexibility & Deformation Test Instruments
        • T-Bend Tester
        • Cylindrical Mandrel Bend Tester
        • Conical Mandrel Bend Tester
        • Cupping Tester
        • Ball Punch Tester
        • Compression Tester
        • Edge Crush Tester
        • Paper Burst Strength Tester
        • Cardboard Burst Strength Tester
        • Textile Burst Strength Tester
        • Box Compression Tester
        • Roll Crush Tester
        • Paint Film Flexibility Tester
        • Putty Flexibility Tester Sample Substrates
        • Automatic Bottle Cap Torque Tester
      • Impact Test Instruments
        • DuPont Impact Tester
        • Heavy Duty Impact Tester
        • Universal Impact Tester
        • Falling Dart Impact Tester
        • Wood Panel Impact Tester
      • Adhesion Test Instruments
        • Adhesion Cross Cut Tester
        • Single Blade Adhesion Cross Cut Tester
        • Adhesion Cross Cut Ruler Test Kit
        • Adhesion X Cut Test Kit
        • Automatic Paint Adhesion Cross Cut Tester
        • Fully-Automatic Pull-Off Adhesion Tester
        • Automatic Pull-Off Adhesion Tester
        • Peel Adhesion Tester
        • COF Coefficient Friction Tester
        • Peel Tester for Adhesives
        • Loop Tack Tester
        • Adhesion Peel Tester
      • Hardness Test Instruments
        • Pencil Hardness Tester
        • Desktop Pencil Hardness Tester
        • Motorized Pencil Hardness Tester
        • Dur-O-Test Hardness Pen
        • Pendulum Hardness Tester
        • Automatic Scratch Tester
        • Automatic Mar Tester
        • Scratching Tool
        • Leeb Rebound Hardness Tester
        • Portable Leeb Hardness Tester
        • Handheld Hardness Tester
        • Digital Pocket Hardness Tester
        • Portable Rockwell & Brinell Hardness Tester
        • Handheld Rockwell Hardness Tester
        • Small Load Brinell Hardness Tester
        • Brinell Hardness Tester with Touchscreen
        • Brinell Hardness Tester
        • Multi Hardness Tester
        • Rockwell Hardness Tester with Touchscreen
        • Rockwell Hardness Tester
        • Rockwell Superficial Hardness Tester
        • Large Sample Rockwell Hardness Tester
        • Rockwell Plastic Hardness Tester
        • Vickers Hardness Tester
        • Small Load Vickers Hardness Tester
        • Knoop Hardness Tester
        • Micro Hardness Tester with Touchscreen
        • Micro Hardness Tester
        • Buchholz Indentation Tester
      • Abrasion Test Instruments
        • Wet Abrasion Scrub Tester
        • Advanced Wet Abrasion Scrub Tester
        • Single Platform Rotary Abrasion Tester
        • Dual Platform Rotary Abrasion Tester
        • Linear Abrasion Tester
        • Manual Crockmeter
        • Electric Crockmeter
        • Electric Rotary Crockmeter
        • Rotary Crockmeter
        • Leather Circular Crockmeter
        • Gakushin Crockmeter
        • Martindale Abrasion and Pilling Tester
        • Wyzenbeek Oscillatory CylinderTester
        • RCA Abrasion Tester
        • Falling Sand Abrasion Tester
        • 9-Step Chromatic Transference Scale AATCC
        • AATCC Grey Scale Color Test Cards
        • Advanced Abrasion Tester
      • Tensile Test Systems
        • Single Column Tensile Machine
        • Dual Column Tensile Machine
      • Brittleness Test Systems
        • Brittleness Test System
        • Brittleness Tester
      • Color Fastness Wash Test
        • Colorfastness to Washing Tester
    • Climatic Testing Instruments
      • Weathering Test Equipment
        • Desktop UV Weathering Test Chamber
        • UV-Light Weathering Test Chamber
        • Xenon Weathering Test Chamber
        • Xenon Test Chamber with Water Filter System
        • Xenon Arc Weathering Test Chamber
      • Corrosion Control
        • Salt Spray Chamber
        • Salt Fog Test Chamber
        • Advanced Salt Spray Test Chamber
      • Temperature and Humidity
        • Laboratory Oven
        • Explosion Proof Laboratory Oven
        • Muffle Kiln Furnace
        • Laboratory Vacuum Oven
        • Vertical Light Chamber
        • Low Temperature Bath
        • Laboratory Water Bath
        • Laboratory Oil Bath
        • Climate Test Chamber
        • Dry Bath Incubator
      • UV Curing
        • UV Curing Equipment
        • UV Light Radiometer
    • Mixing Dispersion Milling
      • Electric Laboratory Mixer
      • Electric Laboratory Stirrer
      • Automatic Lab Mixer with Timer
      • Laboratory High Speed Disperser
      • Laboratory All-Purpose Disperser
      • Laboratory Disperser with Timer
      • Laboratory Automatic Disperser with Timer & Temperature Measurement
      • Explosion Proof Laboratory High Shear Disperser & Mixer
      • Laboratory Basket Mill
      • Twin-Arm Paint Can Shaker
      • Automatic Paint Shaker
      • Pneumatic Paint Shaker
      • Paint Dispenser
      • Automatic Paint Dispenser
      • Automatic Orbital Shaker
      • Laboratory Plate Shaker
      • Large Orbital Shaker
      • Laboratory Vacuum Disperser
      • Advanced Vacuum Disperser
      • Automatic Powder Mill
      • Desktop Powder Mill
      • Three Roll Mill
      • Muller Grinder
      • Laboratory Horizontal Sand Mill
      • Laboratory Pneumatic Mixer
      • Pneumatic Mixer with Lift
      • Nano Mixer
      • Laboratory Vacuum High Speed Disperser
      • Laboratory Emulsifier
      • Laboratory V Blender
    • Printing Ink Properties Testing
      • MEK Solvent Rub Abrasion Tester
      • Advanced MEK Solvent Abrasion Tester
      • Ink Proofing Press
      • Printing Ink Proofer
    • Laboratory Test Instruments
      • Laboratory Weighing Scales
      • Laboratory Weighing Scales with Color Touchscreen
      • Schopper Riegler Tester
      • Hydraulic Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • Dropping Point Tester
      • Dropping Point Tester ASTM D2265
      • Automatic Dropping Point Tester ASTM D2265
      • Bench Scales
      • Platform Scales
      • Gas Permeability Tester
      • Water Vapor Permeability Tester
    • Scientific Sample Preparation
      • Scientific Textile Sample Preparation
        • GSM Sample Cutter
    • Textile Test Instruments
      • MIE Abrasion Tester
      • Universal Wear Abrasion Tester
    • Environmental Test Instruments
      • Handheld Air Quality Meter
      • Ambient Air Sampler
    • Plastic Test Instruments
      • Charpy Izod Impact Tester
      • Charpy Impact Tester
      • Izod Impact Tester
      • Melt Flow Index Tester
    • Paper Test Instruments
      • Schopper Riegler Tester
      • Hydraulic Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • ISO 534 Caliper
      • ISO 534 Automatic Paper Thickness Meter
      • Paper Burst Strength Tester
      • Cardboard Burst Strength Tester
    • Concrete Test Instruments
      • Concrete Rebound Hammer
      • Digital Concrete Rebound Hammer
  • Equipment
    • Industrial Production Dispersers
      • Industrial Disperser
      • Industrial Twin-Shaft Disperser
      • Industrial Multi-Shaft Disperser
      • Industrial Vacuum Disperser
      • High Viscosity Disperser
      • In-Tank Disperser
      • Pressurized In-Tank Disperser
      • Vacuum In-Tank Disperser
      • Dispersion Blades
    • Industrial Production Mixers & Agitators
      • In-Tank Mixer
    • Industrial Production Blenders
      • V Blender
      • Double Cone Blender
    • Industrial Production Mills & Grinders
      • Industrial Basket Mill
      • Three Roll Mill
  • Chemicals
  • Contact Us
  • About Us
FREEQUOTE
  • Home
  • ASTM Test Standards
  • ASTM D1895 Plastics (powders, granules, flakes) Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials: Essential Evaluation Techniques for Material Handling Properties

ASTM D1895 Plastics (powders, granules, flakes) Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials: Essential Evaluation Techniques for Material Handling Properties

ASTM D1895 Plastics (powders, granules, flakes) Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials: Essential Evaluation Techniques for Material Handling Properties

by QUALTECH PRODUCTS INDUSTRY Science & Research / Sunday, 22 June 2025 / Published in ASTM Test Standards, Science and Research

ASTM D1895 provides essential test methods for measuring apparent density, bulk factor, and pourability of plastic materials like molding powders, granules, and flakes. These properties are crucial for manufacturers and processors who need to understand how plastic materials will behave during packaging, storage, and processing. The test results help companies optimize their manufacturing processes, predict material flow characteristics, and ensure consistent quality in final products.

A laboratory technician measures plastic powders and granules using scientific equipment in a clean testing lab.

The standard offers different procedures tailored to various forms of plastic materials, from fine powders to large flakes and cut fibers. By measuring apparent density, you can determine how much space a given weight of material will occupy. Bulk factor calculations help you understand the ratio between the plastic’s solid density and its loose-packed density. Pourability tests reveal how easily materials will flow through hoppers and feed systems.

These measurements directly impact industrial efficiency and product quality. For example, materials with poor pourability might cause feeding issues in molding machines, while those with inconsistent bulk density could lead to variations in part weight and dimensions. By implementing ASTM D1895 in your quality control process, you can avoid costly production issues and ensure your plastic materials perform consistently.

Key Takeaways

  • ASTM D1895 helps manufacturers measure and control critical handling properties of plastic powders and granules including apparent density, bulk factor, and pourability.
  • Different test procedures are available for various material forms, from fine powders to large flakes, allowing for accurate characterization across diverse plastic products.
  • Test results provide valuable data for optimizing packaging, storage, and processing operations while predicting how materials will perform during manufacturing.

Purpose and Scope of ASTM D1895

A laboratory scene showing containers with plastic powders, granules, and flakes alongside scientific measuring instruments used for testing material density.

ASTM D1895 provides standardized methods for measuring key physical properties of plastic materials in various forms. This test method helps manufacturers and processors evaluate how plastic materials will perform during handling, packaging, and fabrication processes.

Specific Use in Plastics Industry

The test methods in ASTM D1895 serve critical functions in plastic manufacturing and processing operations. When you work with plastic materials, understanding how they flow, pack, and occupy space directly impacts your production efficiency.

These test methods help you:

  • Predict material behavior during transport and storage
  • Calculate proper equipment settings for processing
  • Determine appropriate packaging requirements
  • Estimate storage space needs for raw materials
  • Optimize material handling systems

Manufacturers use these measurements to maintain consistency between material batches. This ensures predictable performance during production runs and helps minimize processing issues that could lead to defects or waste.

Types of Materials Covered

ASTM D1895 applies to a wide range of plastic materials in various physical forms. The test methods are designed to accommodate:

  • Fine powders: Particles that can flow through small funnels
  • Granules: Small pellets commonly used in injection molding
  • Flakes: Larger, flat particles often found in recycled plastics
  • Cut fibers: Short fiber segments used in reinforced compounds

Different procedures within D1895 are tailored to these various forms. For example, Test Method A works well for fine granules and powders that pour easily, while Test Method B is more suitable for larger flakes and materials that don’t flow smoothly through narrow openings.

Targeted Physical Properties

ASTM D1895 focuses on three key physical properties that directly impact how plastic materials perform during handling and processing:

Apparent Density: Measures the mass of material that fills a specific volume, including void spaces between particles. This property, expressed in g/cm³, indicates how “fluffy” or compact a material is. Lower apparent density means the material takes up more space per unit weight.

Bulk Factor: Represents the ratio of the volume occupied by plastic material to the volume of the same weight of solid plastic. This helps you predict volume changes during processing as air between particles is eliminated.

Pourability: Evaluates how easily the material flows through openings. This property is crucial for operations involving hoppers, feeders, and material transfer systems. Good pourability reduces feeding problems and ensures consistent material flow rates.

Test Methods and Sample Preparation

A laboratory technician preparing plastic powder, granule, and flake samples for testing using precision instruments on a workbench.

ASTM D1895 provides three distinct test methods to measure different properties of plastic materials. Proper sample selection and preparation are critical for obtaining reliable results when testing powders, granules, and flakes.

Overview of Test Methods A, B, and C

Test Method A measures apparent density of fine granules and powders that flow easily through a funnel. You’ll use a standardized funnel and receiving cup to determine the mass per unit volume of the loosely packed material.

Test Method B determines the bulk factor, which is the ratio of a material’s specific volume to its apparent specific volume. This method is especially useful for materials that don’t flow freely, like large flakes or cut fibers.

Test Method C evaluates pourability, which indicates how easily plastic materials flow through an opening. You’ll measure the time required for a specified amount of material to flow through a standardized funnel.

Each method serves a specific purpose in characterizing plastic materials, helping you select appropriate processing parameters and equipment.

Sample Selection and Handling

Select samples that truly represent the bulk material being tested. Avoid using contaminated or defective materials that could skew your results.

Store samples in clean, dry containers at room temperature (23 ± 2°C) for at least 40 hours before testing. This conditioning ensures moisture content stabilization.

Handle samples carefully to avoid:

  • Compaction or densification
  • Segregation of different particle sizes
  • Moisture absorption or loss
  • Static charge buildup

For materials sensitive to atmospheric conditions, use desiccators or sealed containers. Document any special handling procedures you implement to maintain sample integrity.

Sample Preparation for Accurate Results

Remove any foreign matter from samples using tweezers or a clean brush. Avoid touching samples with bare hands as oils and moisture can affect results.

For Test Method A, ensure your sample is dry and flows freely. If the material contains agglomerates, break them apart gently without changing the particle characteristics.

When preparing samples for Test Method B:

  1. Weigh the exact amount specified in the standard
  2. Pour carefully into the measuring cylinder
  3. Tap the cylinder according to the standardized procedure

For Test Method C, sieve the material if required to remove oversized particles that might block the funnel. Record any sample preparation steps you take for transparency and reproducibility.

Principles of Apparent Density, Bulk Factor, and Pourability

Illustration showing containers with plastic powders, granules, and flakes demonstrating pouring, packing density, and measurement of weight for volume.

ASTM D1895 focuses on three key properties that help predict how plastic materials behave during handling, packaging, and processing. These properties provide valuable insights into material flow characteristics and volume changes that occur during manufacturing.

Measurement of Apparent Density

Apparent density represents how “fluffy” a plastic material is in its loose state. It’s calculated by dividing the mass of a material by the volume it occupies without compaction. For fine granules and powders, Test Method A uses a funnel to pour material into a 100 cm³ cylindrical cup.

The material flows freely through the funnel into the cup. After filling, excess material is carefully leveled off without compacting the contents. The weight of the material in the cup is measured, and apparent density is calculated in g/cm³.

This measurement helps you predict:

  • Storage space requirements
  • Feeding behavior in processing equipment
  • Material handling characteristics

Lower apparent density values indicate more air between particles, which affects how the material flows and packs.

Determining Bulk Factor

Bulk factor measures the volume change plastic materials undergo during processing. It’s calculated as the ratio of the apparent density of the material to its solid density after molding.

A high bulk factor indicates significant volume reduction during processing. This information is crucial for:

  • Mold design calculations
  • Feed hopper sizing
  • Process parameter development

For example, if a material has an apparent density of 0.5 g/cm³ and a solid density of 1.0 g/cm³, its bulk factor would be 2.0. This means the material will occupy twice the volume in powder form compared to its final molded state.

Understanding bulk factor helps you anticipate how much material is needed to fill a mold completely.

Assessing Pourability

Pourability evaluates how easily plastic materials flow under gravity. This property is critical for operations involving material transfer and feeding systems.

The test involves measuring the time required for a specific amount of material to flow through a funnel of standardized dimensions. Materials with good pourability flow quickly and consistently without bridging or clogging.

Factors affecting pourability include:

  • Particle size and shape
  • Moisture content
  • Surface characteristics
  • Electrostatic properties

Poor pourability can lead to processing issues like inconsistent feeding, weight variations in molded parts, and production delays. By measuring pourability, you can identify materials that might require special handling equipment or flow aids.

Testing pourability helps predict a material’s behavior in hoppers, feed systems, and during packaging operations.

Applications and Industry Relevance

A laboratory scene showing a technician measuring plastic powders, granules, and flakes with scientific equipment, alongside industrial machinery used in plastics processing.

ASTM D1895 testing provides critical data for plastic material handling, processing, and quality control. These measurements directly impact manufacturing efficiency and product consistency across multiple industries.

Importance in Material Handling and Packaging

Apparent density measurements help you determine how much space plastic materials will occupy during transportation and storage. Materials with lower apparent density require larger containers, increasing shipping costs and warehouse space needs.

When designing hoppers and feed systems, bulk factor data is essential. It helps you predict how materials will flow through equipment and prevent costly blockages or inconsistent feeding issues.

Pourability testing directly impacts packaging operations. Highly pourable materials can be automatically filled into containers more efficiently, while poor pourability may require specialized equipment or handling procedures.

Many industries rely on these measurements:

  • Automotive (for plastic component production)
  • Packaging (for container optimization)
  • Consumer goods (for consistent product manufacturing)

Role in Processing and Fabrication

During plastic processing, apparent density affects how materials melt and flow. Materials with consistent density provide predictable processing characteristics in injection molding, extrusion, and other fabrication methods.

You’ll find these measurements particularly valuable when:

  • Setting up extrusion equipment parameters
  • Calculating precise feed rates for injection molding
  • Determining optimal processing temperatures

Bulk factor data helps you select appropriate screw designs in processing equipment. Materials with high bulk factors often require specialized screws to ensure proper compaction and melting.

Many fabricators use apparent density measurements to predict cycle times and machine settings, improving production efficiency and reducing waste during setup.

Ensuring Uniform Weights and Quality Control

Consistent apparent density ensures uniform weights in final products. This is crucial for applications where weight consistency impacts performance or regulatory compliance.

Quality control departments use ASTM D1895 testing to:

  • Verify incoming raw materials meet specifications
  • Monitor batch-to-batch consistency
  • Identify potential processing issues before production

When producing small plastic parts, even minor variations in apparent density can lead to significant weight differences across production runs. Regular testing helps you maintain tight tolerances.

Many companies incorporate these measurements into their quality management systems. This provides documentation for quality certifications and helps trace any production issues to specific material batches.

Result Interpretation and Implications

A scientist in a lab coat measures plastic powders and granules using laboratory equipment in a clean, organized lab.

The data collected from ASTM D1895 testing provides crucial insights that directly affect packaging, handling, and processing decisions for plastic materials. Proper interpretation of these results can optimize manufacturing processes and prevent costly mistakes.

Understanding and Using Test Results

Apparent density results tell you how much space your plastic material will occupy for a given weight. Lower density values (0.2-0.4 g/cm³) indicate fluffier materials that will require larger storage containers and transport vehicles. Higher values (0.6-0.8 g/cm³) suggest more compact materials.

Bulk factor measurements reveal how much your material will compress during processing. A high bulk factor (>2.0) means significant volume reduction during molding, which affects hopper designs and feed rates. This helps you accurately calculate material needs for production runs.

Pourability test results, measured in seconds, indicate how freely your material flows. Good pourability (<30 seconds) means faster, more consistent feeding into processing equipment. Poor pourability (>60 seconds) may require special handling equipment or additives to improve flow.

Always compare your results to material specifications from suppliers. Significant deviations can indicate quality issues or material changes.

Impact on Manufacturing Decisions

Test results directly influence equipment selection and process parameters. Materials with low apparent density require larger hoppers and feed systems to maintain consistent production rates. You may need to adjust screw designs in extruders when working with materials that have very high or low bulk factors.

Poor pourability results signal potential feeding problems. You might need to:

  • Install vibration systems to improve material flow
  • Modify hopper angles (steeper angles for poor-flowing materials)
  • Adjust feed screw designs to prevent bridging

Process temperature settings often correlate with bulk factor results. Materials with high bulk factors typically need more careful heating profiles to ensure proper melting without degradation.

Regulatory compliance can be affected by these properties. Some applications have minimum density requirements for structural integrity or maximum bulk factors for consistent processing.

Contamination and Storage Considerations

Test results can help detect contamination issues. Sudden changes in apparent density or pourability often indicate foreign materials or moisture contamination. Regular testing helps maintain quality control.

Proper storage becomes more critical for materials with:

  • Low apparent density (more susceptible to moisture absorption)
  • Poor pourability (more likely to compact during storage)
  • High bulk factors (more affected by temperature fluctuations)

Store powders and granules in sealed containers to prevent moisture absorption, which dramatically affects flowability. Temperature-controlled storage is especially important for materials showing inconsistent test results.

Materials with extreme properties may require special handling procedures. Very low-density powders can create dust hazards, while poorly flowing materials might need regular rotation of inventory to prevent compaction.

Best Practices in ASTM D1895 Implementation

A scientist in a lab coat measures plastic powders, granules, and flakes in glass containers using laboratory instruments in a modern lab.

Implementing ASTM D1895 correctly requires proper equipment, attention to procedural details, and awareness of safety considerations. Following these best practices ensures accurate measurements of apparent density, bulk factor, and pourability of plastic materials.

Equipment and Tools Needed

You’ll need specific equipment to perform ASTM D1895 testing correctly:

  • Standard funnel with a 9.5 mm diameter opening for Test Method A
  • Measuring cup with volume of 100 cm³ or 400 cm³ depending on test method
  • Precision scale capable of 0.1% accuracy of the sample mass
  • Timer for controlling pour rates
  • Support stand to hold the funnel at the correct height
  • Leveling tool to create a flat surface for accurate volume measurement

All equipment must be clean and dry before testing. Calibrate your scale regularly to ensure measurement accuracy. Store funnels properly to prevent damage to the opening that could affect flow characteristics.

Minimizing Errors and Ensuring Safety

To obtain reliable results, you must control several variables:

  • Maintain consistent pour height (38 mm from cup rim to funnel tip)
  • Control environmental conditions (temperature at 23 ± 2°C, humidity at 50 ± 5%)
  • Use representative samples following proper sampling procedures
  • Perform at least three measurements and calculate the average

Avoid vibration or movement during testing that could affect particle arrangement. Wear appropriate PPE including safety glasses when handling plastic materials.

For powders with poor flow properties, do not force material through the funnel as this invalidates results. Instead, switch to Test Method B or C as appropriate.

Environmental and Safety Concerns

When implementing ASTM D1895, consider these important safety and environmental factors:

  • Dust control is essential, especially with fine powders. Use proper ventilation or dust collection systems.
  • Some plastic materials may create static electricity. Ground equipment properly to prevent discharge.
  • Dispose of test materials according to local regulations. Recycle plastic materials when possible.
  • Be aware of potential respiratory hazards from fine particles. Use respirators when needed.

Store test samples in sealed containers to prevent moisture absorption that could affect results. Label all materials clearly with appropriate hazard information.

For thermoplastic materials that might degrade, minimize exposure to heat and UV light before testing to maintain sample integrity.

Comparison with Other Standards

Illustration showing three containers with plastic powders, granules, and flakes alongside measurement tools indicating their density and bulk properties.

ASTM D1895 is one of several methods used globally to test plastic material properties. The standard has similarities and differences with other testing approaches that are worth understanding when selecting the right test for your needs.

ISO Method R 60 and R 61

ISO Method R 60 and R 61 are international standards that closely parallel ASTM D1895 in testing plastic materials. ISO R 60 focuses on the apparent density determination of molding materials that can be poured through a funnel. This is similar to Test Method A in ASTM D1895.

ISO R 61 deals with the apparent density of materials that cannot easily flow through a funnel, matching ASTM D1895’s Test Method B. The main difference lies in the specific equipment dimensions and testing procedures.

When working internationally, you might need to consider both standards. Many companies that operate globally perform both tests to ensure compliance with different regional requirements.

Contrast with Other Bulk Density Tests

ASTM D1895 differs from other bulk density tests in several key ways. Unlike ASTM D4164 (which tests extruded compounds), D1895 specifically targets granular or powdered materials before processing.

The test also varies from ASTM D4253, which measures maximum density through vibration. D1895 measures materials in their natural, uncompacted state.

Test Standard Primary Focus Material State
ASTM D1895 Apparent density, pourability Uncompacted powders/granules
ASTM D4164 Bulk density Extruded compounds
ASTM D4253 Maximum density Vibration-compacted materials

These differences make D1895 particularly useful for quality control in manufacturing where understanding how plastic powders will fill molds is crucial.

Relevance to ASTM International and International Standards

ASTM D1895 holds significant importance within ASTM International’s framework of plastic testing standards. It’s maintained by Committee D20 on Plastics, specifically Subcommittee D20.70 on Analytical Methods.

The test serves as a reference point for other international standards. Many ISO standards have adopted similar principles, creating partial harmonization between different testing systems.

You’ll find that manufacturers often reference both ASTM and ISO standards in material specifications. This dual-reference approach helps ensure materials meet quality requirements across different markets and regulatory environments.

When implementing quality control processes, understanding these relationships between standards helps you develop testing protocols that satisfy multiple compliance requirements simultaneously.

Frequently Asked Questions

Understanding ASTM D1895 involves several key aspects from testing procedures to practical applications. These questions address the most common inquiries about this important standard for measuring apparent density, bulk factor, and pourability of plastic materials.

What does the ASTM D1895 test method assess in terms of plastic materials, and why is it a crucial standard within the plastics industry?

ASTM D1895 evaluates three main properties of plastic materials: apparent density, bulk factor, and pourability. Apparent density measures the mass of plastic material that fills a specific volume, while bulk factor is the ratio of the material’s specific volume to its solid volume.

Pourability assesses how easily plastic materials flow through equipment. This test is crucial because these properties directly impact material handling, storage requirements, and processing efficiency in manufacturing operations.

These measurements help manufacturers predict how materials will behave during transport and processing, allowing for better quality control and cost management in production.

How is the ASTM D1895 test for apparent density, bulk factor, and pourability of plastic materials performed, and what materials does it primarily apply to?

The test involves different procedures depending on the material form. For apparent density, a funnel is used to fill a cup with a known volume of plastic material, which is then weighed to calculate density.

Bulk factor is determined by comparing this apparent density to the material’s solid density. Pourability tests measure the time it takes for material to flow through a standard funnel.

These methods primarily apply to plastic powders, granules, pellets, flakes, and cut fibers. The test accommodates various forms from fine powders to larger flakes, making it versatile across different plastic material types.

What are the common applications of the ASTM D1895 test results in real-world scenarios, particularly for powders, granules, and flakes?

Test results help determine proper silo and hopper designs for efficient material flow. Manufacturers use these measurements to calibrate feeding equipment and establish optimal processing parameters.

The data influences packaging decisions, shipping costs, and storage space requirements. For molding operations, apparent density affects how much material is needed per shot and how the material will fill molds.

Companies also use these results to verify material consistency between batches and from different suppliers, ensuring their production processes remain stable and predictable.

In what ways does the ASTM D1895 test impact quality control and product development in the plastics sector?

The test provides baseline measurements that help detect variations in raw materials. When apparent density or pourability shifts, it often signals potential issues with material quality or processing.

Product developers use these properties to determine if a material is suitable for specific applications or manufacturing methods. Testing new formulations with ASTM D1895 helps predict how they’ll perform in production environments.

Quality control teams can use the test to troubleshoot processing problems, as changes in these properties often correlate with processing difficulties or final product defects.

Could you explain how the ASTM D1895 test compares with other bulk density measurement methods, and highlight the situations where it is the most appropriate choice?

Unlike tap density methods (ASTM D1895 vs. ASTM D4164), which measure density after compaction, D1895 measures the natural, uncompacted state of materials. This makes it better for predicting initial handling characteristics.

Compared to ISO 60, ASTM D1895 offers more comprehensive evaluation by including pourability testing. This makes it particularly valuable when flow characteristics are important.

ASTM D1895 is most appropriate when you need to evaluate materials as they would naturally feed into processing equipment. It’s especially useful for quality control in manufacturing environments where consistent material flow is critical.

What are some best practices for conducting the ASTM D1895 test to ensure accurate and reliable results, and how should these results be interpreted?

Always use clean, dry equipment and ensure the test environment has controlled humidity and temperature. Material should be properly conditioned according to the standard before testing.

Maintain a consistent drop height and rate when filling the test cup. Perform multiple measurements and calculate the average to reduce variability and error.

When interpreting results, compare values against established specifications rather than absolute numbers. Look for trends over time rather than isolated results, as this can reveal gradual changes in material properties.

Consider the relationship between apparent density, bulk factor, and pourability together rather than individually. These properties are interconnected and collectively provide insight into how materials will perform during processing.

About QUALTECH PRODUCTS INDUSTRY Science & Research

What you can read next

ASTM B964-16 Standard Test Methods for Flow Rate of Metal Powders Using the Carney Funnel: Essential Quality Control for Powder Metallurgy Applications
AS/NZS 1580.402.1 Mandrel Bend Test: Evaluating Coating Flexibility and Adhesion in the Surface Coatings Industry
ASTM D823 Standard practices for producing films of uniform thickness of paint coatings and related products on test panels

GET A FREE QUOTE

Contact Us – We would like to hear from you

Get information now on products, technical support, customer service, sales, public relations, professional services, and partners. You can also provide feedback on our website.
Please kindly complete this form. One of our specialists will reply to your enquiry shortly. Alternatively contact us via the company details in the USA, in Australia or in the UK.

    Please note we respect your privacy and keep your details strictly confidential.

    ASTM
    ANSI
    bsi
    IEC
    AATCC
    TÜV
    ISO
    DIN

    © 1978 - 2025 QUALTECH PRODUCTS INDUSTRY Terms of Use Terms & Conditions Cookies Contact Us

    TOP
    This website uses cookies to improve your experience, however, we respect your privacy and the cookies only collect anonymous data. We respect your privacy and you can opt-out, if you like.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT
    en_USEnglish
    da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês en_USEnglish
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português