QUALTECH PRODUCTEN INDUSTRIE

QUALTECH PRODUCTEN INDUSTRIE

Echte waarden voor onze klanten & klanten

VS: +1 720 897 7818
VK: +44 161 408 5668
AU: +61 2 8091 0618

E-mail: [email protected]

QUALTECH PRODUCTEN INDUSTRIE
2186 South Holly Street, Denver, Colorado 80222, VS

Openen in Google Maps
  • Welkom
  • instrumenten
    • Viscositeitsmeting:
      • Stroombekers
        • ISO Stroombeker ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Ford Cups ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Zahn Beker ASTM D1084 ASTM D4212 BS EN 535
        • Japanse IWATA Cup
        • DIN-beker DIN 53211
        • Drukbeker ISO 2811-4 BS 3900-A22
        • Standaards en houders voor viscositeitsstroombekers
      • Rotatie Viscometer
        • Handmatige viscositeitsmeter
        • Draagbare viscositeitsmeter
        • Digitale Rotatie Viscosimeter
        • Spindelviscosimeter met touchscreen
        • Krebs Stormer-viscosimeter
        • Viscosimeter op hoge temperatuur
        • Kegel- en plaatviscosimeter
        • Viscositeit Bad
        • Laray-viscosimeter
        • Meel & Zetmeel Viscosimeter
    • Uiterlijk testen
      • Glans
        • Glansmeter
        • Glansmeter met microlens
        • Haze Glansmeter
        • Glansmeter 45° Hoek
        • Glansmeter 75° Hoek
        • Zakglansmeter
        • Glansmeter met touchscreen
        • Kleurenlezer en glansmeter
        • Inline glansmeter
        • Mini glansmeter
      • Transparantie Waas Helderheid
        • Waasmeter
        • Handbediende troebelheidsmeter
        • Desktop troebelheidsmeter
      • Kleur
        • Handheld kleurenlezer
        • Draagbare kleurenlezer
        • Benchtop kleurenlezer
        • Handheld Spectrofotometer
        • Desktop-spectrofotometer
        • Kleurbeoordelingskast
        • Kleurproefstation
        • Gardner Kleurvergelijker
        • Lovibond Tintometer
        • RAL-kleurenkaarten
        • Pantone-kleurenkaarten
        • Handheld kleurenlezer voor vloeistoffen
        • Handheld colorimeter voor poeders
        • Handheld colorimeter voor farmaceutische producten
        • Kleurafstemmingssoftware
      • Witheid
        • Handheld witheidsmeter
        • Draagbare witheidsmeter
        • ISO desktop-witheidsmeter
        • CIE D65 Witheidsmeter
        • Porositeitsmeetapparaat
      • Dikte
        • Natte laagdiktemeters
        • Wiel Natte laagdiktemeter
        • Laagdiktemeter
        • Ultrasone diktemeter
        • Verfinspectiemeter
        • Banaan Diktemeter
        • Remklauw
        • Plaatdiktemeter
      • Reflectie dekking
        • Reflectiemeter
        • Handheld spectrale reflectiemeter
        • Desktopreflectiemeter
        • Digitale cryptometer
        • Infrarood reflectiemeter
        • Lichttransmissiemeter
        • Glas & Lens Lichttransmissiemeter
        • Lichttransmissiemeter 365nm & 550nm & 850nm & 940nm
        • UV-lichtdoorlaatbaarheidsmeter
        • IR-lichtdoorlatendheidsmeter
        • Blauwlichttransmissiemeter
        • Enkele hoek retroreflectometer
        • Retroreflectometer met meerdere hoeken
    • Toepassingsreeks:
      • Dip Coater
      • Automatische vacuümfilmapplicator
      • Automatische filmapplicator met filmtoepassingstabel van roestvrij staal en glas
      • Nivelleertester
      • SAG-tester
      • Filmaanbrengers
      • Wire Bar Coater
      • Verfspuitpistool
      • Spin Coater
      • Vacuümtafel voor filmtoepassing
      • Drawdown oppervlak
      • Damborddiagrammen
      • Stikstof Dip Coater
      • Dipcoater met meerdere lagen
      • Dip Coater met constante temperatuur
      • Casterguide voor Cube Film Applicator
      • Automatische substraatspuitkamer
      • Waterwas sproeicabine
    • Vochtmeting
      • Karl Fischer-titrator
      • Coulometrische Karl Fischer-titrator
      • Digitale vochtigheidsmeter
      • Vochtanalysator
      • Draaiende vernevelaar
    • Testen van fysieke eigenschappen
      • Fijnheid van de maling
        • Fijnheid van maalgraadmeters
        • Elektrische fijnheidsmeters
      • Droog tijd
        • Droogtijdrecorder
        • Automatische droogtijdrecorder
        • Door-droge staatstester
      • Dikte
        • Dichtheidsbekers
        • Gas pyknometer
        • Handheld dichtheidsmeter
        • Tafeldichtheidsmeter
        • Handheld dichtheidsmeter
        • Transmissie Densitometer
        • Optische transmissiedichtheidsmeter
        • Drijfvermogen dichtheidsmeter
        • Scott volumemeter
        • Hall-flowmeter
        • Carney-stroommeter
        • Bulkdichtheidsmeter ASTM D1895 Methode A
        • Bulkdichtheidsmeter ASTM D1895 Methode B
        • Bulkdichtheidsmeter ISO R60
        • Bulkdichtheidsmeter
        • Schijnbare dichtheidsvolumemeter
        • Tik op Dichtheidsmeter
        • Poeder rusthoek
        • Poederkenmerken Tester:
        • Automatisch filterzuiverheidsanalysesysteem
        • Automatische True Density Pyknometer
        • Gustavsson-stroommeter
        • Arnold dichtheidsmeter
        • Bulkdichtheidsmeter ISO-methode R60
        • Bulkdichtheidsmeter ASTM D1895 Methode A
        • Bulkdichtheidsmeter ASTM D1895 Methode B
        • Bulkdichtheidsmeter ASTM D1895 Methode C
        • Automatische dichtheidsmeter voor vloeistoffen
        • Dichtheidsmeter voor vloeistoffen
        • Akoestische Comfortkast
      • Geleidbaarheid & pH
        • Zak pH-meter
        • Handbediende pH-meter
        • Draagbare pH-meter
        • Desktop pH-meter
        • Handbediende geleidbaarheidsmeter
        • Draagbare geleidbaarheidsmeter
        • Bureaublad geleidbaarheid & pH-meter
        • PH-elektrode
        • Ionenselectieve elektrode
        • Opgeloste zuurstofelektrode
        • Referentie-elektrode
        • Geleidbaarheidselektrode
        • Metalen elektrode
        • Temperatuur elektrode
      • breking
        • Handheld refractometer
        • Draagbare digitale refractometer
        • Automatische digitale refractometer
        • Digitale refractometer
        • Analoge refractometer
      • Ruwheid
        • Oppervlakteruwheidsmeter
      • Temperatuur en vochtigheid
        • MFFT-balk met touchscreen
        • Vochtigheidsmeter
        • Laboratoriumthermometer
        • Infrarood thermometer
        • Vlampunttester met gesloten kop
        • Lage temperatuur gesloten beker vlampunttester
        • Automatische vlampunttester met gesloten beker
        • Abel Vlampunt Tester
        • Open Cup Vlampunt Tester
        • Vlampunttester met open beker bij lage temperatuur
        • Verwekingspunttester
        • Smeltpuntapparatuur
        • Smeltpunttester met video-opname
        • Smeltpunttester
        • Microscoop smeltpunt tester
        • Thermische optische analysator
        • Hitteafbuigingstester
      • Spanningsmeting:
        • Oppervlaktespanningsmeter Du Noüy Ring
        • Oppervlaktespanningsmeter Wilhelmy Plate
      • Meting deeltjesgrootte:
        • Deeltjesgrootteanalysator
        • Laboratoriumzeefschudder
    • Mechanische eigenschappen testen:
      • Flexibiliteits- en vervormingstestinstrumenten
        • T-bochttester
        • Cilindrische doornbochttester
        • Conische doornbochttester
        • Cupping-tester
        • Ball Punch-tester
        • Compressietester
        • Edge Crush-tester
        • Papier barststerkte tester
        • Kartonnen barststerktetester
        • Textiel barststerkte tester
        • Box Compressie Tester
        • Roll Crush-tester
        • Flexibiliteitstester voor verffilms
        • Plamuurflexibiliteitstester Monstersubstraten
        • Automatische momenttester voor flesdoppen
      • Impacttestinstrumenten
        • DuPont impacttester
        • Zwaar uitgevoerde impacttester
        • Universele impacttester
        • Vallende Dart Impact Tester
        • Impacttester voor houten panelen
      • Adhesietestinstrumenten
        • Adhesie Cross Cut Tester
        • Single Blade Adhesie Cross Cut Tester
        • Adhesie Cross Cut Ruler-testkit
        • Adhesie X Cut-testkit
        • Automatische verfhechting Cross Cut-tester
        • Volautomatische pull-off hechtingstester
        • Automatische pull-off hechtingstester
        • Afpeladhesietester
        • COF-coëfficiënt wrijvingstester
        • Peel Tester voor Lijmen
        • Loop Tack-tester
        • Hechting Peel Tester
      • Hardheidstestinstrumenten
        • Potloodhardheidstester
        • Desktop potlood hardheidsmeter
        • Gemotoriseerde potloodhardheidstester
        • Dur-O-Test hardheidspen
        • Slinger hardheidsmeter
        • Automatische krastester
        • Automatische maart-tester
        • Krabgereedschap
        • Leeb Rebound-hardheidsmeter
        • Draagbare Leeb-hardheidstester
        • Draagbare hardheidstester
        • Digitale zakhardheidstester
        • Draagbare Rockwell & Brinell-hardheidstester
        • Handheld Rockwell-hardheidstester
        • Brinell-hardheidstester met kleine belasting
        • Brinell hardheidsmeter met touchscreen
        • Brinell hardheidsmeter
        • Multi hardheidsmeter
        • Rockwell-hardheidstester met touchscreen
        • Rockwell-hardheidsmeter
        • Rockwell Oppervlakkige Hardheidsmeter
        • Rockwell-hardheidstester voor grote monsters
        • Rockwell kunststof hardheidsmeter
        • Vickers-hardheidsmeter
        • Vickers-hardheidstester voor kleine belasting
        • Knoop hardheidsmeter
        • Micro-hardheidstester met touchscreen
        • Micro hardheidsmeter
        • Buchholz Indentatie Tester
      • Slijttestinstrumenten
        • Natte schuurscrubtester
        • Geavanceerde natte schuurscrubtester
        • Roterende slijtagetester met één platform
        • Dual Platform Rotary Slijtage Tester
        • Lineaire Slijtage Tester
        • Handmatige Crockmeter
        • Elektrische Crockmeter
        • Elektrische roterende crockmeter
        • Roterende Crockmeter
        • Leren ronde Crockmeter
        • Gakushin Crockmeter
        • Martindale Slijtage- en Pilling Tester
        • Wyzenbeek Oscillerende Cilinder Tester
        • RCA Slijtage Tester
        • Vallende zandafslijtingstester
        • 9-staps chromatische overdrachtsschaal AATCC
        • AATCC-testkaarten voor grijstinten
        • Geavanceerde slijtagetester
      • Trektestsystemen
        • Trekmachine met enkele kolom
        • Dubbele kolom trekmachine
      • Broosheidstestsystemen
        • Broosheidstestsysteem
        • Broosheidstester
      • Kleurechtheid Wastest
        • Kleurvastheid bij wastester
    • Klimaattestinstrumenten
      • Testapparatuur voor verwering
        • Desktop UV-testkamer voor verwering
        • UV-licht verwering testkamer
        • Xenon Verwering Testkamer
        • Xenon-testkamer met waterfiltersysteem
        • Xenon Arc Verwering Testkamer
      • Corrosiebestrijding
        • Zoutsproeikamer
        • Zout Mist Testkamer
        • Geavanceerde zoutsproeitestkamer
      • Temperatuur en vochtigheid
        • Laboratorium Oven
        • Explosieveilige laboratoriumoven
        • Moffeloven Oven
        • Laboratorium Vacuüm Oven
        • Verticale lichte kamer
        • Bad op lage temperatuur
        • Laboratorium Waterbad
        • Laboratorium oliebad
        • Klimaat testkamer
        • Droge Bad Incubator
      • UV-uitharding
        • UV-uithardende apparatuur
        • UV-lichtradiometer
    • Dispersiefrezen mengen
      • Elektrische laboratoriummixer
      • Elektrische laboratoriumroerder
      • Automatische laboratoriummixer met timer
      • Laboratorium hoge snelheid dispergeermiddel
      • Laboratorium All-Purpose Disperser
      • Laboratorium Disperser met Timer
      • Automatische laboratoriumverspreider met timer en temperatuurmeting
      • Explosieveilige High Shear Disperser & Mixer voor laboratorium
      • Laboratoriummandmolen
      • Twin-Arm Paint Can Shaker
      • Automatische verfschudder
      • Pneumatische verfschudder
      • Verfdispenser
      • Automatische verfdispenser
      • Automatische orbitale schudder
      • Schudapparaat voor laboratoriumplaten
      • Grote orbitale shaker
      • Laboratorium Vacuüm Disperser
      • Geavanceerde vacuümverspreider
      • Automatische poedermolen
      • Desktop poedermolen
      • Drie Roll Mill
      • Muller Grinder
      • Horizontale zandmolen voor laboratorium
      • Laboratorium pneumatische mixer
      • Pneumatische mixer met lift
      • Nano-mixer
      • Laboratorium Vacuüm Hoge Snelheid Disperser
      • Laboratorium emulgator
      • Laboratorium V-menger
    • Testen van eigenschappen van afdrukinkt
      • MEK Solvent Rub Slijtage Tester
      • Geavanceerde MEK Solvent Abrasion Tester
      • Inktproefpers
      • Drukinkt proofer
    • Laboratoriumtestinstrumenten
      • Laboratoriumweegschalen
      • Laboratoriumweegschalen met kleurentouchscreen
      • Schopper Riegler-tester
      • Hydraulische Schopper Riegler-tester
      • Digitale Schopper Riegler-tester
      • Canadian Standard Freeness Tester
      • Dropping Point-tester
      • Druppelpunttester ASTM D2265
      • Automatische druppelpunttester ASTM D2265
      • Bankweegschaal
      • Platformweegschalen
      • Gasdoorlaatbaarheidstester
      • Waterdampdoorlaatbaarheidstester
    • Wetenschappelijke monstervoorbereiding
      • Voorbereiding van wetenschappelijke textielmonsters
        • GSM-monstersnijder
    • Textiel testinstrumenten
      • MIE Slijtage Tester
      • Universele slijtage-slijtagetester
    • Milieutestinstrumenten
      • Handheld luchtkwaliteitsmeter
      • Omgevingsluchtmonsternemer
    • Kunststof testinstrumenten
      • Charpy Izod-impacttester
      • Charpy-impacttester
      • Izod-impacttester
      • Smeltstroomindextester
    • Papieren testinstrumenten
      • Schopper Riegler-tester
      • Hydraulische Schopper Riegler-tester
      • Digitale Schopper Riegler-tester
      • Canadian Standard Freeness Tester
      • ISO 534 Remklauw
      • ISO 534 Automatische papierdiktemeter
      • Papier barststerkte tester
      • Kartonnen barststerktetester
    • Concrete testinstrumenten
      • Beton terugslaghamer
      • Digitale betonterugslaghamer
  • Apparatuur
    • Dispersers voor industriële productie
      • Industriële Disperser
      • Industriële disperser met twee assen
      • Industriële multi-asverspreider
      • Industriële vacuümverspreider
      • Disperser met hoge viscositeit
      • Disperser in de tank
      • In-Tank Disperser onder druk
      • Vacuüm In-Tank Disperser
      • Dispersiebladen
    • Industriële productiemixers en roerwerken
      • In-Tank Mixer
    • Industriële productieblenders
      • V-blender
      • Dubbele kegelmenger
    • Industriële productiemolens en slijpmachines
      • Industriële mandmolen
      • Drie Roll Mill
  • Chemicaliën
  • Neem contact met ons op
  • Over ons
VRIJCITAAT
  • Huis
  • Wetenschap & Onderzoek
  • Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

door QUALTECH PRODUCTENINDUSTRIE Wetenschap en onderzoek / vrijdag, 13 juni 2025 / Gepubliceerd in Wetenschap & Onderzoek

The European Pharmacopoeia (Ph. Eur.) Standard Funnel Method 2.9.36 for Powder Flow represents a critical test method used across pharmaceutical manufacturing to evaluate how well powder materials flow. When you work with pharmaceutical powders in production settings, understanding flow properties helps predict how these materials will behave during processes like tableting, capsule filling, and bulk transportation. This standardized method provides quantitative measurements that directly impact product quality, manufacturing efficiency, and ultimately patient safety by ensuring consistent medication dosing.

Laboratory scene showing a funnel measuring powder flow into a container with scientific equipment in the background.

The test works by measuring how quickly a specific amount of powder flows through a standardized funnel with a specific opening size. You can use the results to categorize powders based on their flowability, from “excellent” to “very poor” flowing materials. This classification helps formulation scientists select appropriate excipients, determine if flow enhancers are needed, and design manufacturing processes that accommodate the specific flow characteristics of their powder blends.

Unlike other powder flow methods such as angle of repose or compressibility index tests, the funnel method simulates real-world processing conditions that powders encounter during manufacturing. You can easily compare different powder batches using this test, which makes it valuable for both quality control and formulation development stages of pharmaceutical production. The method’s standardization across Europe ensures consistent evaluation criteria regardless of where testing occurs.

Belangrijkste punten

  • The Ph. Eur. Standard Funnel Method 2.9.36 quantifies powder flow properties that directly impact pharmaceutical manufacturing quality and efficiency.
  • You can use test results to categorize powders, select appropriate excipients, and design manufacturing processes that accommodate specific flow characteristics.
  • The standardized nature of the test allows for consistent evaluation of powder flow across different batches and manufacturing facilities throughout Europe.

Overview of Ph. Eur. Standard Funnel Method 2.9.36

Laboratory scene showing a standard funnel with powder flowing through it into a container, illustrating the measurement of powder flow.

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing processes. This standardized method helps evaluate how well powdered substances move through processing equipment.

Definition and Scope

The Standard Funnel Method 2.9.36 is a test procedure in the European Pharmacopoeia that measures the flowability of powders used in pharmaceutical production. It evaluates how easily powder flows through a funnel with standard dimensions under controlled conditions. The test applies to dry powders and granules intended for various pharmaceutical applications.

This method specifically examines the time it takes for a powder sample to flow through the funnel, providing data on flow properties. Poor flow can cause manufacturing problems like inconsistent tablet weights or capsule filling issues.

The scope covers substances for pharmaceutical use, including active ingredients and excipients. It helps determine if materials are suitable for specific manufacturing processes.

Historical Context and Standardization

The Standard Funnel Method evolved from earlier industrial powder testing approaches but was standardized specifically for pharmaceutical applications. In the 1980s and 1990s, regulatory bodies recognized the need for consistent methods to evaluate powder properties.

The European Pharmacopoeia Commission formalized this test to ensure reliable quality control across the pharmaceutical industry. This standardization addressed previous inconsistencies in testing methods between manufacturers.

Over time, the method has been refined through multiple supplement editions of the European Pharmacopoeia. As noted in the search results, the 6.0 Supplement 6.3 included important recommendations on quality standards for pharmaceutical substances.

Alignment With Other Regulatory Guidelines

The Ph. Eur. Standard Funnel Method 2.9.36 aligns with broader pharmaceutical quality guidelines. It complements other powder characterization methods like angle of repose, compressibility index, and bulk density testing.

The test is recognized by other major pharmacopoeias including the United States Pharmacopeia (USP) and Japanese Pharmacopoeia (JP). This alignment helps pharmaceutical manufacturers meet global regulatory requirements with standardized testing protocols.

Results from this method can be used to classify powders based on their flow properties. These classifications help determine if substances need modification for specific uses, as mentioned in the search results about substances being labeled for “intended for a specific use.”

You can use these test results to make decisions about processing parameters or whether flow enhancers are needed.

Specific Use and Primary Purpose

A laboratory scene showing a funnel with powder flowing through it into a container, observed by a person in a lab coat.

The Ph. Eur. Standard Funnel Method 2.9.36 serves as a fundamental tool for measuring powder flow properties in pharmaceutical manufacturing and quality control. This standardized approach helps ensure consistency in powder behavior evaluation across the pharmaceutical industry.

Designed Evaluation Criteria

The method specifically evaluates the flowability of pharmaceutical powders by measuring the time it takes a specific amount of powder to flow through a standardized funnel. This flow time directly correlates with powder flowability characteristics.

You can use this test to determine if your powder will flow properly in manufacturing equipment. The method also measures the angle of repose – the steepest angle at which a powder forms a stable pile.

A smaller angle indicates better flow properties, while a larger angle suggests poor flowability. These measurements help you predict how powders will behave during tableting, capsule filling, and other pharmaceutical manufacturing processes.

Key Applications in Industry

In pharmaceutical manufacturing, the Funnel Method helps you determine if your powder formulation is suitable for high-speed production lines. Poor flowing powders can cause weight variations in tablets or capsules, leading to dosage inconsistencies.

This test is particularly valuable when:

  • Selecting excipients for direct compression formulations
  • Troubleshooting manufacturing issues related to powder flow
  • Developing new powder-based products
  • Establishing quality control specifications

The method applies to various pharmaceutical materials including active ingredients, excipients, and finished powder blends. Quality control departments regularly use this test to verify batch-to-batch consistency and ensure manufacturing processes remain reliable and reproducible.

Materials and Products Assessed

A scientist in a lab coat monitors powder flowing through a funnel into a container as part of a laboratory test on powder flow characteristics.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow testing is applicable to a specific range of powder materials commonly found in pharmaceutical applications. This test method provides valuable insights into powder flowability, which affects numerous manufacturing processes.

Suitable Powder Types

The Standard Funnel Method is particularly suitable for free-flowing pharmaceutical powders. These include excipients like microcrystalline cellulose, lactose, and dicalcium phosphate. Active pharmaceutical ingredients (APIs) with good flow properties can also be assessed effectively.

Granular materials used in tablet and capsule formulations are ideal candidates for this method. Many direct compression blends benefit from this assessment before tableting.

You’ll find this method especially valuable for testing:

  • Diluents: Lactose, mannitol, sorbitol
  • Disintegrants: Sodium starch glycolate, croscarmellose sodium
  • Glidants: Colloidal silicon dioxide, talc
  • Lubricants: Magnesium stearate, stearic acid

Typical Sample Characteristics

Samples tested via the Standard Funnel Method typically have particle sizes ranging from 100-1000 μm. The method works best with dry, non-cohesive powders that flow freely under gravity.

Your test samples should ideally have:

  • Moisture content below 3%
  • Bulk density between 0.3-1.5 g/cm³
  • Minimal electrostatic properties
  • Regular particle morphology

Powders should be properly conditioned at controlled temperature and humidity prior to testing. Most samples require 50-100g of material to obtain reliable results.

The particle size distribution should be relatively uniform to avoid segregation during testing.

Limitations on Material Use

You should avoid using this method for highly cohesive or very fine powders (below 50 μm). These materials often experience flow problems like bridging in the funnel.

The test is not suitable for:

  • Hygroscopic materials that absorb moisture during testing
  • Powders with extreme static charges
  • Materials with needle-like particles
  • Very dense powders (>2.0 g/cm³)
  • Highly compressible materials

Temperature and humidity significantly affect results, so materials sensitive to environmental conditions require special consideration.

The method doesn’t work well with wet granulations or materials with moisture content above 5%.

General Principles of Powder Flow Testing

Laboratory setup showing powder flowing through a transparent funnel into a container, with scientific instruments nearby on a clean bench.

Powder flow testing evaluates how easily powder materials move and flow under various conditions. These tests provide critical data for industries handling powders in manufacturing, storage, and processing operations.

Fundamentals of Flowability

Flowability refers to a powder’s ability to flow in a predictable and reliable manner. This property affects how powders behave during processing, packaging, and dispensing operations.

When examining powder flow, you need to consider both cohesive forces (particles sticking together) and gravitational forces. The balance between these determines how well a powder will flow.

Good powder flow is characterized by consistent movement without bridging, ratholing, or segregation. Poor flowing powders often show erratic behavior and can cause production interruptions.

Several classification systems exist to categorize powders based on flowability – from free-flowing to very cohesive. These classifications help you select appropriate handling equipment and processing parameters.

Parameters Measured

Flow rate measures how quickly powder passes through an opening and is often expressed in g/s or ml/s. This directly impacts production speed and efficiency.

Angle of repose quantifies the steepest angle at which powder remains stable without flowing. Lower angles (≤30°) indicate better flowability, while higher angles (≥45°) suggest poor flow properties.

Compressibility index and Hausner ratio evaluate how powder density changes under pressure. These calculations use both bulk and tapped densities to assess flow characteristics.

Key Flow Parameters:

  • Flow rate
  • Angle of repose
  • Bulk density
  • Tapped density
  • Compressibility
  • Cohesion
  • Wall friction

Shear testing measures the internal friction of powder samples, providing detailed information about flow behavior under various stress conditions.

Influencing Factors on Powder Flow

Particle size significantly impacts flow – generally, larger particles (>100μm) flow better than smaller ones (<50μm). Very fine powders often exhibit poor flow due to stronger cohesive forces.

Particle shape affects how particles interact. Spherical particles typically flow better than irregular, needle-shaped, or flaky particles that can interlock and resist movement.

Moisture content can dramatically alter powder flow. Even small increases in moisture can create liquid bridges between particles, reducing flowability.

Environmental conditions like humidity, temperature, and storage time influence flow properties. Powders may absorb moisture from humid air, leading to caking and reduced flowability.

Electrostatic charges, especially in dry environments, can cause particles to repel or attract each other, disrupting normal flow patterns.

Interpretation of Results and Industry Implications

Laboratory scene showing a funnel apparatus measuring powder flow into a container, surrounded by scientific tools and data charts on flow rates.

The data from the Ph. Eur. Standard Funnel Method provides critical insights that directly impact manufacturing decisions and product quality. Understanding these results helps you optimize formulations and processing parameters.

Analyzing Powder Flow Data

Flow rate measurements obtained through the funnel method are typically expressed in seconds or grams per second. Lower flow times indicate better flowability, while higher values suggest poor flow properties.

You should always compare your results against established acceptance criteria for your specific material. A common approach is creating flowability classifications:

  • Excellent flow: < 10 seconds
  • Good flow: 10-15 seconds
  • Fair flow: 16-20 seconds
  • Poor flow: > 20 seconds

Variability in results is equally important. High standard deviations between measurements often indicate inconsistent powder properties that may cause processing issues.

Impact on Product Quality and Manufacturing

Poor powder flow directly affects tablet weight variation, content uniformity, and dissolution profiles in pharmaceutical products. When powders flow inconsistently, you’ll experience challenges with die filling in tablet presses.

Manufacturing efficiency decreases with poorly flowing powders. Production speeds must be reduced to maintain quality, and equipment modifications may be necessary. This translates to higher production costs and reduced output.

You can use funnel test results to guide formulation decisions. Adding flow enhancers like colloidal silicon dioxide (0.2-0.5%) often improves flowability when test results are poor. Equipment selection also depends on these results—high-shear mixers may be needed for powders with poor flow properties.

Representative Use Cases and Examples

Laboratory setup showing a funnel with powder flowing into a container, illustrating a powder flow measurement process.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow has practical applications across various industries. Its standardized approach makes it valuable for quality control and material characterization.

Application for Pharmaceutical Powders

In pharmaceutical manufacturing, the funnel method helps evaluate flow properties of active pharmaceutical ingredients (APIs) and excipients. You can use this test to determine if a powder will flow consistently through tablet press hoppers during production.

For example, when formulating a direct compression tablet, you would test lactose and microcrystalline cellulose excipients to ensure proper flow characteristics. Poor flow can cause weight variations in final dosage forms.

The test also helps you determine:

  • Whether granulation is needed to improve powder flowability
  • If glidants (like silica) should be added to your formulation
  • How environmental conditions might affect your powder’s performance

Quality control departments routinely use this test to verify batch-to-batch consistency of raw materials.

Other Industrial Examples

Beyond pharmaceuticals, the funnel method finds applications in food processing, cosmetics, and chemical industries. Food manufacturers use it to test ingredients like flour, sugar, and powdered flavors.

In cement and construction materials testing, you can apply this method to evaluate the flow properties of fine aggregates and additives. This helps ensure consistent concrete quality.

Cosmetic producers rely on this test for:

  • Evaluating face powders and foundations
  • Testing raw materials for production
  • Validating manufacturing processes

The method is particularly valuable when you need to compare different powder lots or suppliers. For instance, a paint manufacturer might test various pigment powders to ensure they’ll flow properly through production equipment.

Best Practices for Implementation

A laboratory technician pouring powder into a standard funnel apparatus to measure powder flow, with scientific instruments and a clean lab environment in the background.

Implementing the Ph. Eur. Standard Funnel Method 2.9.36 correctly ensures reliable powder flow measurements for pharmaceutical applications. Attention to detail during setup and execution is critical for meaningful results.

Sample Preparation Recommendations

Material Conditioning: You should store powder samples in controlled environments (20-25°C, 40-60% relative humidity) for at least 24 hours before testing to ensure equilibration.

Quantity Preparation: Prepare at least 100g of sample for each test run. Use a standardized method to mix bulk samples, avoiding segregation of particles by size or density.

Particle Size Considerations: For materials with larger particles (>2mm), you may need to adjust the funnel diameter. Note any modifications in your test report.

Moisture Control: Check moisture content before testing. Even small changes can significantly affect flow properties, especially for hygroscopic materials.

Pre-test Handling: Minimize vibration or compression during transfer to prevent altering the powder’s natural flow characteristics.

Ensuring Reproducibility and Reliability

Equipment Verification: You should calibrate your funnel dimensions against reference standards quarterly. The outlet opening must maintain precise specifications (10.0±0.01mm).

Systematic Testing Protocol: Conduct at least three replicate measurements for each sample. Discard results with >5% variation and investigate the cause.

Environmental Controls: Maintain consistent testing conditions. Temperature fluctuations of even 3°C can alter flow results by up to 10% for some formulations.

Reference Standards: Include a reference standard powder (like microcrystalline cellulose) in your testing sequence to verify system performance.

Documentation: Record all testing parameters including:

  • Room temperature and humidity
  • Sample preparation details
  • Any deviations from standard protocol
  • Observations of unusual flow behavior

Comparison With Alternative Powder Flow Methods

The Ph. Eur. Standard Funnel Method 2.9.36 is one of several techniques used to evaluate powder flowability in pharmaceutical and other industries. Different methods provide complementary data that can help you select the most appropriate manufacturing processes.

Contrast With ASTM Methods

ASTM D6393 (Bulk Solids Characterization) differs from the Ph. Eur. method by measuring multiple flow properties rather than just flow rate. This comprehensive approach helps you predict powder behavior under various processing conditions.

ASTM B213 specifically addresses metal powders, using a calibrated funnel with standardized dimensions that may differ from the Ph. Eur. glass funnel. This method is tailored for metallurgical applications rather than pharmaceuticals.

ASTM D7891 employs a powder rheometer to measure dynamic flow properties. Unlike the static measurement of the funnel method, rheometers can simulate different processing forces and conditions.

Advantages and Limitations

The Ph. Eur. funnel method offers simplicity and repeatability with minimal equipment requirements. You can quickly assess basic flow characteristics without extensive training or complex data interpretation.

However, this method has notable limitations. It only works for relatively free-flowing powders and cannot evaluate cohesive materials that won’t flow through the funnel at all.

The funnel method provides a single data point (flow time) rather than comprehensive flow profiles. For complete characterization, you should combine it with additional tests like angle of repose or compressibility index.

Environmental factors such as humidity and static electricity can significantly affect results, requiring careful control of testing conditions for meaningful comparisons.

Frequently Asked Questions

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing. This test provides valuable data about material behavior in production environments.

What is the purpose of the Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow in assessing material properties?

The Ph. Eur. Standard Funnel Method 2.9.36 evaluates how easily pharmaceutical powders flow through a standardized funnel. This test measures the time it takes for a specific amount of powder to flow through the funnel’s orifice.

The method helps determine if a powder will flow consistently during manufacturing processes like tableting or capsule filling. Poor flowing materials can cause weight variations and dosing problems in final products.

The test serves as an early indicator of potential processing issues, allowing formulators to modify compositions or processing conditions before full-scale production.

How does the Ph. Eur. Standard Funnel Method 2.9.36 contribute to the quality control in pharmaceutical manufacturing?

The Standard Funnel Method provides a reproducible way to assess batch-to-batch consistency of pharmaceutical materials. By establishing acceptable flow time ranges, manufacturers can quickly identify when raw materials deviate from specifications.

Quality control teams use these measurements to approve or reject incoming materials before they enter production. This prevents costly manufacturing delays and potential product failures.

The method helps maintain compliance with regulatory requirements by ensuring consistent product performance across batches. Documentation of flow properties becomes part of a product’s quality history.

Which types of powders or granular materials are typically tested using the Standard Funnel Method 2.9.36, and why is it significant?

Pharmaceutical excipients like lactose, microcrystalline cellulose, and starch are commonly tested with this method. These materials form the bulk of many tablet and capsule formulations.

Active pharmaceutical ingredients (APIs) with sufficient quantity per dose may also undergo testing. Understanding API flow properties helps determine appropriate manufacturing methods.

Granulated materials produced during wet or dry granulation processes benefit from this testing. The method helps verify if granulation improved flow characteristics as intended.

What fundamental principles govern the operation of the Ph. Eur. Powder Flow method, and how do they relate to material behavior?

Gravity is the primary force driving powder flow through the funnel. The method measures how effectively particles overcome friction and cohesive forces when moving under gravity’s influence.

Particle size, shape, density, and surface characteristics all affect flow time results. Smaller, irregularly shaped particles typically flow more slowly due to increased surface area and cohesion.

Moisture content significantly impacts flow behavior by creating liquid bridges between particles. The method indirectly assesses how these physical properties combine to affect overall flowability.

Can you describe how the results of the Ph. Eur. Standard Funnel Method 2.9.36 are interpreted, and what implications they have for product development?

Results are typically reported as flow time in seconds for a specified powder mass. Shorter flow times indicate better flowing materials that will likely process more efficiently.

Comparative analysis between materials helps formulators select excipients with complementary properties. Blending a poorly flowing API with free-flowing excipients may improve overall mixture performance.

Flow time trends can signal potential stability issues when tracked over a product’s shelf life. Increasing flow times might indicate moisture uptake or particle agglomeration requiring formulation adjustments.

How does the Ph. Eur. Standard Funnel Method 2.9.36 compare to other powder flowability testing methods in terms of accuracy and application?

The Funnel Method offers simplicity and speed compared to more complex techniques like shear cell testing. However, it provides less detailed information about fundamental powder properties.

Unlike angle of repose measurements, which evaluate static powder behavior, the Funnel Method assesses dynamic flow under gravity. This better mimics conditions in feeding hoppers and fill systems.

The method complements rather than replaces techniques like Carr’s Index or Hausner Ratio. For comprehensive material characterization, formulators typically employ multiple test methods to develop a complete flowability profile.

Over QUALTECH PRODUCTENINDUSTRIE Wetenschap en onderzoek

Wat u hierna kunt lezen

ASTM D5125-10(2020)e1 Standard Test Method for Viscosity: Understanding Its Purpose and Industry Applications
MPIF Standard 01 Method for Sampling Metal Powders: Essential Testing Protocol for Quality Assurance in Powder Metallurgy Manufacturing
ASTM B964-16 Standard Test Methods for Flow Rate of Metal Powders Using the Carney Funnel: Essential Quality Control for Powder Metallurgy Applications

ONTVANG EEN GRATIS OFFERTE

Neem contact met ons op - We horen graag van u

Krijg nu informatie over producten, technische ondersteuning, klantenservice, verkoop, public relations, professionele services en partners. U kunt ook feedback geven op onze website.
Gelieve dit formulier in te vullen. Een van onze specialisten zal uw vraag zo spoedig mogelijk beantwoorden. U kunt ook contact met ons opnemen via de bedrijfsgegevens in de VS, Australië of het VK.

    Houd er rekening mee dat we uw privacy respecteren en uw gegevens strikt vertrouwelijk behandelen.

    ASTM
    ANSI
    bsi
    IEC
    AATCC
    TÜV
    ISO
    DIN

    © 1978 - 2025 QUALTECH PRODUCTENINDUSTRIE Gebruiksvoorwaarden algemene voorwaarden Koekjes Neem contact met ons op

    BOVENKANT
    Deze website maakt gebruik van cookies om uw ervaring te verbeteren, maar wij respecteren uw privacy en de cookies verzamelen alleen anonieme gegevens. Wij respecteren uw privacy en u kunt zich afmelden als u dat wilt.
    Cookie-instellingenAccepteer alles
    Beheer toestemming

    Privacyoverzicht

    Deze website maakt gebruik van cookies om uw ervaring te verbeteren terwijl u door de website navigeert. Hiervan worden de cookies die als noodzakelijk zijn gecategoriseerd, in uw browser opgeslagen omdat ze essentieel zijn voor de werking van de basisfunctionaliteiten van de website. We gebruiken ook cookies van derden die ons helpen analyseren en begrijpen hoe u deze website gebruikt. Deze cookies worden alleen met uw toestemming in uw browser opgeslagen. U heeft ook de mogelijkheid om u af te melden voor deze cookies. Maar als u zich afmeldt voor sommige van deze cookies, kan dit uw browse-ervaring beïnvloeden.
    Nodig
    Altijd ingeschakeld
    Noodzakelijke cookies zijn absoluut essentieel voor het goed functioneren van de website. Deze cookies zorgen anoniem voor de basisfunctionaliteiten en beveiligingsfuncties van de website.
    KoekjeDuurBeschrijving
    cookielawinfo-checkbox-analytics11 maandenDeze cookie wordt geplaatst door de AVG Cookie Consent-plug-in. De cookie wordt gebruikt om de toestemming van de gebruiker voor de cookies op te slaan in de categorie ‘Analytics’.
    cookielawinfo-checkbox-functioneel11 maandenDe cookie wordt ingesteld door GDPR-cookietoestemming om de toestemming van de gebruiker voor de cookies vast te leggen in de categorie "Functioneel".
    cookielawinfo-checkbox-noodzakelijk11 maandenDeze cookie wordt geplaatst door de AVG Cookie Consent-plug-in. De cookies worden gebruikt om de toestemming van de gebruiker voor de cookies op te slaan in de categorie "Noodzakelijk".
    cookielawinfo-checkbox-anderen11 maandenDeze cookie wordt geplaatst door de AVG Cookie Consent-plug-in. De cookie wordt gebruikt om de toestemming van de gebruiker voor de cookies op te slaan in de categorie ‘Overig’.
    cookielawinfo-checkbox-prestaties11 maandenDeze cookie wordt geplaatst door de AVG Cookie Consent-plug-in. De cookie wordt gebruikt om de toestemming van de gebruiker voor de cookies op te slaan in de categorie "Prestaties".
    bekeken_cookie_beleid11 maandenDe cookie wordt ingesteld door de AVG Cookie Consent-plug-in en wordt gebruikt om op te slaan of de gebruiker al dan niet toestemming heeft gegeven voor het gebruik van cookies. Er worden geen persoonlijke gegevens opgeslagen.
    Functioneel
    Functionele cookies helpen bij het uitvoeren van bepaalde functionaliteiten, zoals het delen van de inhoud van de website op sociale mediaplatforms, het verzamelen van feedback en andere functies van derden.
    Prestatie
    Prestatiecookies worden gebruikt om de belangrijkste prestatie-indexen van de website te begrijpen en te analyseren, wat helpt bij het leveren van een betere gebruikerservaring voor de bezoekers.
    Analyses
    Analytische cookies worden gebruikt om te begrijpen hoe bezoekers omgaan met de website. Deze cookies helpen bij het verstrekken van informatie over statistieken, het aantal bezoekers, het bouncepercentage, de verkeersbron, enz.
    Advertentie
    Advertentiecookies worden gebruikt om bezoekers relevante advertenties en marketingcampagnes te bieden. Deze cookies volgen bezoekers op verschillende websites en verzamelen informatie om aangepaste advertenties weer te geven.
    Anderen
    Andere niet-gecategoriseerde cookies zijn cookies die worden geanalyseerd en nog niet in een categorie zijn ingedeeld.
    OPSLAAN & ACCEPTEREN
    nl_NLNederlands
    en_USEnglish da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano sv_SESvenska pt_PTPortuguês nl_NLNederlands
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português