INDUSTRIE DES PRODUITS QUALTECH

INDUSTRIE DES PRODUITS QUALTECH

De vraies valeurs pour nos clients & clients

États-Unis : +1 720 897 7818
Royaume-Uni : +44 161 408 5668
UA : +61 2 8091 0618

Email : [email protected]

INDUSTRIE DES PRODUITS QUALTECH
2186 South Holly Street, Denver, Colorado 80222, États-Unis

Ouvrir dans Google Maps
  • Accueillir
  • Instruments
    • Mesure de viscosité
      • Gobelets Flow
        • Coupe d'écoulement ISO ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Coupes Ford ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Coupe Zahn ASTM D1084 ASTM D4212 BS EN 535
        • Coupe japonaise IWATA
        • Coupelle DIN DIN 53211
        • Tasse à pression ISO 2811-4 BS 3900-A22
        • Supports et supports pour coupes à débit de viscosité
      • Viscosimètre rotatif
        • Viscosimètre portatif
        • Viscosimètre portatif
        • Viscosimètre rotatif numérique
        • Viscosimètre à broche avec écran tactile
        • Viscosimètre Krebs Stormer
        • Viscosimètre haute température
        • Viscosimètre à cône et plaque
        • Bain de viscosité
        • Viscosimètre Laray
        • Viscosimètre Farine & Amidon
    • Test d'apparence
      • Brillant
        • Brillancemètre
        • Brillancemètre avec micro-lentille
        • Brillancemètre Haze
        • Brillancemètre Angle 45°
        • Brillancemètre Angle 75°
        • Glossmètre de poche
        • Brillancemètre avec écran tactile
        • Lecteur de couleur et compteur de brillance
        • Brillancemètre en ligne
        • Mini Brillancemètre
      • Transparence Brume Clarté
        • Compteur de brume
        • Turbidimètre portatif
        • Turbidimètre de bureau
      • Couleur
        • Lecteur couleur portable
        • Lecteur couleur portable
        • Lecteur couleur de paillasse
        • Spectrophotomètre portatif
        • Spectrophotomètre de bureau
        • Cabinet d'évaluation des couleurs
        • Station d'épreuvage couleur
        • Comparateur de couleurs Gardner
        • Teintemètre Lovibond
        • Cartes de couleurs RAL
        • Cartes de couleurs Pantone
        • Lecteur couleur portable pour liquides
        • Colorimètre portable pour poudres
        • Colorimètre portable pour produits pharmaceutiques
        • Logiciel de correspondance des couleurs
      • Blancheur
        • Compteur de blancheur portable
        • Compteur de blancheur portable
        • Mètre de blancheur de bureau d'OIN
        • Compteur de blancheur CIE D65
        • Appareil de mesure de la porosité
      • Épaisseur
        • Jauges d'épaisseur de film humide
        • Jauge d'épaisseur de film humide de roue
        • Jauge d'épaisseur de revêtement
        • Jauge d'épaisseur à ultrasons
        • Jauge d'inspection de la peinture
        • Jauge d'épaisseur de banane
        • Étrier
        • Mètre d'épaisseur de feuille
      • Opacité de réflexion
        • Compteur de réflectance
        • Réflectomètre spectral portatif
        • Réflectomètre de bureau
        • Cryptomètre numérique
        • Compteur de réflectance infrarouge
        • Compteur de transmission lumineuse
        • Compteur de transmission de lumière pour verre et lentille
        • Transmetteur de lumière 365nm & 550nm & 850nm & 940nm
        • Compteur de transmission de la lumière UV
        • Compteur de transmission de la lumière infrarouge
        • Compteur de transmission de la lumière bleue
        • Rétroréflectomètre à angle unique
        • Rétroréflectomètre multi-angle
    • Série d'applications
      • Coucheuse par trempage
      • Applicateur automatique de film sous vide
      • Applicateur de film automatique avec table d'application de film en acier inoxydable et en verre
      • Testeur de mise à niveau
      • Testeur SAG
      • Applicateurs de film
      • Enduiseur de barre de fil
      • Pistolet à peinture
      • Spin Coater
      • Table à vide pour application de film
      • Surface de rabattement
      • Graphiques en damier
      • Couche d'immersion d'azote
      • Couche d'immersion multicouche
      • Coucheuse à température constante
      • Casterguide pour applicateur de film cube
      • Chambre de pulvérisation de substrat automatique
      • Cabine de pulvérisation de lavage à l'eau
    • Mesure de l'humidité
      • Titreur Karl Fischer
      • Titreur coulométrique Karl Fischer
      • Humidimètre numérique
      • Analyseur d'humidité
      • Évaporateur rotatif
    • Test des propriétés physiques
      • Finesse de mouture
        • Jauges de finesse de mouture
        • Finesse électrique des jauges de mouture
      • Temps de séchage
        • Enregistreur de temps de séchage
        • Enregistreur de temps de séchage automatique
        • Testeur d'état à sec
      • Densité
        • Tasses de densité
        • Pycnomètre à gaz
        • Densimètre portatif
        • Densimètre de paillasse
        • Densitomètre portatif
        • Densitomètre à transmission
        • Densitomètre à transmission optique
        • Densimètre de flottabilité
        • Scott volumètre
        • Débitmètre Hall
        • Débitmètre Carney
        • Densimètre apparent ASTM D1895 Méthode A
        • Densimètre apparent ASTM D1895 Méthode B
        • Densimètre apparente ISO R60
        • Mètre de densité en vrac
        • Volumemètre de densité apparente
        • Tapez Densimètre
        • Angle de repos de la poudre
        • Testeur de caractéristiques de poudre
        • Système d'analyse automatique de la propreté du filtre
        • Pycnomètre Automatique à Densité Réelle
        • Débitmètre Gustavsson
        • Densimètre Arnold
        • Densimètre apparente Méthode ISO R60
        • Densimètre apparent ASTM D1895 Méthode A
        • Densimètre apparent ASTM D1895 Méthode B
        • Densimètre en vrac ASTM D1895 Méthode C
        • Densimètre automatique pour liquides
        • Densimètre pour liquides
        • Cabinet de confort acoustique
      • Conductivité et pH
        • pH-mètre de poche
        • pH-mètre portatif
        • pH-mètre portatif
        • pH-mètre de bureau
        • Conductimètre portatif
        • Conductimètre portable
        • Conductimètre et pH-mètre de bureau
        • Électrode pH
        • Électrode sélective d'ions
        • Électrode à oxygène dissous
        • Électrode de référence
        • Électrode de conductivité
        • Métal Électrode
        • Électrode de température
      • Réfraction
        • Réfractomètre portatif
        • Réfractomètre numérique portable
        • Réfractomètre numérique automatique
        • Réfractomètre numérique
        • Réfractomètre analogique
      • Rugosité
        • Mesureur de rugosité de surface
      • Température et humidité
        • Barre MFFT avec écran tactile
        • Humidimètre
        • Thermomètre de laboratoire
        • Thermomètre infrarouge
        • Testeur de point d'éclair en coupe fermée
        • Testeur de point d'éclair en tasse fermée à basse température
        • Testeur automatique de point d'éclair en coupe fermée
        • Testeur de point d'éclair Abel
        • Testeur de point d'éclair à coupe ouverte
        • Testeur de point d'éclair à coupelle ouverte basse température
        • Testeur de point de ramollissement
        • Appareil de point de fusion
        • Testeur de point de fusion avec enregistrement vidéo
        • Testeur de point de fusion
        • Testeur de point de fusion au microscope
        • Analyseur optique thermique
        • Testeur de déviation thermique
      • Mesure de tension
        • Tensiomètre superficiel Du Noüy Ring
        • Tensiomètre superficiel à plaque de Wilhelmy
      • Mesure de la taille des particules
        • Analyseur de taille de particules
        • Tamiseuse de laboratoire
    • Essais de propriétés mécaniques
      • Instruments de test de flexibilité et de déformation
        • Testeur de pliage en T
        • Testeur de courbure de mandrin cylindrique
        • Testeur de courbure à mandrin conique
        • Testeur de ventouses
        • Testeur de frappe à billes
        • Testeur de compression
        • Testeur d'écrasement des bords
        • Testeur de résistance à l'éclatement du papier
        • Testeur de résistance à l'éclatement du carton
        • Testeur de résistance à l'éclatement des textiles
        • Testeur de compression de boîte
        • Testeur d'écrasement de rouleau
        • Testeur de flexibilité de film de peinture
        • Exemples de substrats pour testeur de flexibilité Putty
        • Testeur automatique de couple de bouchons de bouteilles
      • Instruments d'essai d'impact
        • Testeur d'impact DuPont
        • Testeur d'impact à usage intensif
        • Testeur d'impact universel
        • Testeur d'impact de fléchettes tombantes
        • Testeur d'impact de panneaux de bois
      • Instruments de test d'adhérence
        • Testeur de coupe transversale d'adhérence
        • Testeur de coupe croisée d'adhérence à lame unique
        • Kit de test de règle de coupe transversale d'adhérence
        • Kit de test Adhérence X Cut
        • Testeur automatique de coupe transversale d'adhérence de peinture
        • Testeur d'adhérence entièrement automatique
        • Testeur d'adhérence automatique
        • Testeur d'adhérence au pelage
        • Testeur de coefficient de frottement COF
        • Testeur de pelage pour adhésifs
        • Testeur de boucle
        • Testeur de pelage d'adhérence
      • Instruments de test de dureté
        • Testeur de dureté de crayon
        • Testeur de dureté de crayon de bureau
        • Testeur de dureté de crayon motorisé
        • Stylo de dureté Dur-O-Test
        • Appareil de contrôle de dureté de pendule
        • Testeur de rayures automatique
        • Testeur de Mar automatique
        • Outil de grattage
        • Testeur de dureté de rebond Leeb
        • Testeur de dureté Leeb portable
        • Testeur de dureté portatif
        • Testeur de dureté de poche numérique
        • Testeur de dureté portable Rockwell & Brinell
        • Testeur de dureté Rockwell portable
        • Testeur de dureté Brinell à petite charge
        • Testeur de dureté Brinell avec écran tactile
        • Testeur de dureté Brinell
        • Testeur de dureté multiple
        • Testeur de dureté Rockwell avec écran tactile
        • Testeur de dureté Rockwell
        • Testeur de dureté superficielle Rockwell
        • Testeur de dureté Rockwell pour grand échantillon
        • Testeur de dureté plastique Rockwell
        • Testeur de dureté Vickers
        • Testeur de dureté Vickers à petite charge
        • Testeur de dureté Knoop
        • Testeur de micro-dureté avec écran tactile
        • Testeur de micro-dureté
        • Testeur d'indentation Buchholz
      • Instruments d'essai d'abrasion
        • Testeur d'abrasion humide
        • Testeur de récurage avancé à l'abrasion humide
        • Testeur d'abrasion rotatif à plate-forme unique
        • Testeur d'abrasion rotatif à double plate-forme
        • Testeur d'abrasion linéaire
        • Crockmètre manuel
        • Crockmètre électrique
        • Crockmètre rotatif électrique
        • Crockmètre rotatif
        • Crockmètre circulaire en cuir
        • Crockmètre Gakushin
        • Testeur d'abrasion et de boulochage Martindale
        • Testeur de cylindre oscillant Wyzenbeek
        • Testeur d'abrasion RCA
        • Testeur d'abrasion par chute de sable
        • Échelle de transfert chromatique en 9 étapes AATCC
        • Cartes de test de couleur à échelle de gris AATCC
        • Testeur d'abrasion avancé
      • Systèmes d'essai de traction
        • Machine de traction à colonne unique
        • Machine de traction à double colonne
      • Systèmes de test de fragilité
        • Système de test de fragilité
        • Testeur de fragilité
      • Test de lavage de la solidité des couleurs
        • Testeur de solidité des couleurs au lavage
    • Instruments d'essais climatiques
      • Équipement de test de vieillissement
        • Chambre d'essai de vieillissement UV de bureau
        • Chambre d'essai de vieillissement à la lumière UV
        • Chambre d'essai de vieillissement au xénon
        • Chambre d'essai au xénon avec système de filtre à eau
        • Chambre d'essai de vieillissement à l'arc au xénon
      • Contrôle de la corrosion
        • Chambre de brouillard salin
        • Chambre d'essai de brouillard salin
        • Chambre d'essai avancée au brouillard salin
      • Température et humidité
        • Four de laboratoire
        • Four de laboratoire antidéflagrant
        • Four à moufle
        • Four à vide de laboratoire
        • Chambre à lumière verticale
        • Bain à basse température
        • Bain-marie de laboratoire
        • Bain d'huile de laboratoire
        • Chambre d'essai climatique
        • Incubateur de bain à sec
      • Durcissement UV
        • Équipement de séchage UV
        • Radiomètre UV
    • Mélange Dispersion Broyage
      • Mélangeur de laboratoire électrique
      • Agitateur de laboratoire électrique
      • Mélangeur de laboratoire automatique avec minuterie
      • Disperseur à grande vitesse de laboratoire
      • Disperseur polyvalent de laboratoire
      • Disperseur de laboratoire avec minuterie
      • Disperseur automatique de laboratoire avec minuterie et mesure de la température
      • Disperseur et mélangeur à cisaillement élevé de laboratoire antidéflagrant
      • Moulin à paniers de laboratoire
      • Agitateur de pots de peinture à deux bras
      • Agitateur de peinture automatique
      • Agitateur de peinture pneumatique
      • Distributeur de peinture
      • Distributeur automatique de peinture
      • Agitateur orbital automatique
      • Agitateur de plaques de laboratoire
      • Grand agitateur orbital
      • Disperseur sous vide de laboratoire
      • Disperseur sous vide avancé
      • Moulin à poudre automatique
      • Moulin à poudre de bureau
      • Moulin à trois rouleaux
      • Broyeur Müller
      • Moulin à sable horizontal de laboratoire
      • Mélangeur pneumatique de laboratoire
      • Mélangeur pneumatique avec ascenseur
      • Nano-mélangeur
      • Disperseur à grande vitesse sous vide de laboratoire
      • Émulsifiant de laboratoire
      • Mélangeur de laboratoire V
    • Test des propriétés de l'encre d'impression
      • Testeur d'abrasion par frottement au solvant MEK
      • Testeur avancé d'abrasion par solvant MEK
      • Presse à épreuves d'encre
      • Épreuve d'encre d'impression
    • Instruments de test de laboratoire
      • Balances de laboratoire
      • Balances de laboratoire avec écran tactile couleur
      • Testeur Schopper Riegler
      • Testeur hydraulique Schopper Riegler
      • Testeur numérique Schopper Riegler
      • Testeur d'égouttage standard canadien
      • Testeur de point de goutte
      • Testeur de point de goutte ASTM D2265
      • Testeur automatique de point de goutte ASTM D2265
      • Balances de table
      • Balances à plate-forme
      • Testeur de perméabilité aux gaz
      • Testeur de perméabilité à la vapeur d'eau
    • Préparation scientifique des échantillons
      • Préparation d'échantillons de textiles scientifiques
        • Coupeur d'échantillons GSM
    • Instruments d'essai de textiles
      • Testeur d'abrasion MIE
      • Testeur d'abrasion universel
    • Instruments de test environnemental
      • Compteur de qualité de l'air portable
      • Échantillonneur d'air ambiant
    • Instruments de test en plastique
      • Testeur de chocs Charpy Izod
      • Testeur de chocs Charpy
      • Testeur d'impact Izod
      • Testeur d'indice de fluidité de fusion
    • Instruments de test papier
      • Testeur Schopper Riegler
      • Testeur hydraulique Schopper Riegler
      • Testeur numérique Schopper Riegler
      • Testeur d'égouttage standard canadien
      • Pied à coulisse ISO 534
      • Compteur automatique d'épaisseur de papier ISO 534
      • Testeur de résistance à l'éclatement du papier
      • Testeur de résistance à l'éclatement du carton
    • Instruments d'essai de béton
      • Marteau à rebond pour béton
      • Marteau à rebond pour béton numérique
  • Équipement
    • Disperseurs de production industrielle
      • Disperseur industriel
      • Disperseur industriel à double arbre
      • Disperseur industriel multi-arbres
      • Disperseur sous vide industriel
      • Disperseur à haute viscosité
      • Disperseur dans le réservoir
      • Disperseur sous pression dans le réservoir
      • Disperseur sous vide dans le réservoir
      • Lames de dispersion
    • Mélangeurs et agitateurs de production industrielle
      • Mélangeur dans le réservoir
    • Mélangeurs de production industrielle
      • Mélangeur en V
      • Mélangeur à double cône
    • Moulins et broyeurs de production industrielle
      • Moulin à panier industriel
      • Moulin à trois rouleaux
  • Produits chimiques
  • Nous contacter
  • À propos de nous
LIBREDEVIS
  • Accueil
  • Science & Research
  • Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

par QUALTECH PRODUCTS INDUSTRY Science & Research / vendredi, 13 juin 2025 / Publié dans Science & Research

The European Pharmacopoeia (Ph. Eur.) Standard Funnel Method 2.9.36 for Powder Flow represents a critical test method used across pharmaceutical manufacturing to evaluate how well powder materials flow. When you work with pharmaceutical powders in production settings, understanding flow properties helps predict how these materials will behave during processes like tableting, capsule filling, and bulk transportation. This standardized method provides quantitative measurements that directly impact product quality, manufacturing efficiency, and ultimately patient safety by ensuring consistent medication dosing.

Laboratory scene showing a funnel measuring powder flow into a container with scientific equipment in the background.

The test works by measuring how quickly a specific amount of powder flows through a standardized funnel with a specific opening size. You can use the results to categorize powders based on their flowability, from “excellent” to “very poor” flowing materials. This classification helps formulation scientists select appropriate excipients, determine if flow enhancers are needed, and design manufacturing processes that accommodate the specific flow characteristics of their powder blends.

Unlike other powder flow methods such as angle of repose or compressibility index tests, the funnel method simulates real-world processing conditions that powders encounter during manufacturing. You can easily compare different powder batches using this test, which makes it valuable for both quality control and formulation development stages of pharmaceutical production. The method’s standardization across Europe ensures consistent evaluation criteria regardless of where testing occurs.

Key Takeaways

  • The Ph. Eur. Standard Funnel Method 2.9.36 quantifies powder flow properties that directly impact pharmaceutical manufacturing quality and efficiency.
  • You can use test results to categorize powders, select appropriate excipients, and design manufacturing processes that accommodate specific flow characteristics.
  • The standardized nature of the test allows for consistent evaluation of powder flow across different batches and manufacturing facilities throughout Europe.

Overview of Ph. Eur. Standard Funnel Method 2.9.36

Laboratory scene showing a standard funnel with powder flowing through it into a container, illustrating the measurement of powder flow.

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing processes. This standardized method helps evaluate how well powdered substances move through processing equipment.

Definition and Scope

The Standard Funnel Method 2.9.36 is a test procedure in the European Pharmacopoeia that measures the flowability of powders used in pharmaceutical production. It evaluates how easily powder flows through a funnel with standard dimensions under controlled conditions. The test applies to dry powders and granules intended for various pharmaceutical applications.

This method specifically examines the time it takes for a powder sample to flow through the funnel, providing data on flow properties. Poor flow can cause manufacturing problems like inconsistent tablet weights or capsule filling issues.

The scope covers substances for pharmaceutical use, including active ingredients and excipients. It helps determine if materials are suitable for specific manufacturing processes.

Historical Context and Standardization

The Standard Funnel Method evolved from earlier industrial powder testing approaches but was standardized specifically for pharmaceutical applications. In the 1980s and 1990s, regulatory bodies recognized the need for consistent methods to evaluate powder properties.

The European Pharmacopoeia Commission formalized this test to ensure reliable quality control across the pharmaceutical industry. This standardization addressed previous inconsistencies in testing methods between manufacturers.

Over time, the method has been refined through multiple supplement editions of the European Pharmacopoeia. As noted in the search results, the 6.0 Supplement 6.3 included important recommendations on quality standards for pharmaceutical substances.

Alignment With Other Regulatory Guidelines

The Ph. Eur. Standard Funnel Method 2.9.36 aligns with broader pharmaceutical quality guidelines. It complements other powder characterization methods like angle of repose, compressibility index, and bulk density testing.

The test is recognized by other major pharmacopoeias including the United States Pharmacopeia (USP) and Japanese Pharmacopoeia (JP). This alignment helps pharmaceutical manufacturers meet global regulatory requirements with standardized testing protocols.

Results from this method can be used to classify powders based on their flow properties. These classifications help determine if substances need modification for specific uses, as mentioned in the search results about substances being labeled for “intended for a specific use.”

You can use these test results to make decisions about processing parameters or whether flow enhancers are needed.

Specific Use and Primary Purpose

A laboratory scene showing a funnel with powder flowing through it into a container, observed by a person in a lab coat.

The Ph. Eur. Standard Funnel Method 2.9.36 serves as a fundamental tool for measuring powder flow properties in pharmaceutical manufacturing and quality control. This standardized approach helps ensure consistency in powder behavior evaluation across the pharmaceutical industry.

Designed Evaluation Criteria

The method specifically evaluates the flowability of pharmaceutical powders by measuring the time it takes a specific amount of powder to flow through a standardized funnel. This flow time directly correlates with powder flowability characteristics.

You can use this test to determine if your powder will flow properly in manufacturing equipment. The method also measures the angle of repose – the steepest angle at which a powder forms a stable pile.

A smaller angle indicates better flow properties, while a larger angle suggests poor flowability. These measurements help you predict how powders will behave during tableting, capsule filling, and other pharmaceutical manufacturing processes.

Key Applications in Industry

In pharmaceutical manufacturing, the Funnel Method helps you determine if your powder formulation is suitable for high-speed production lines. Poor flowing powders can cause weight variations in tablets or capsules, leading to dosage inconsistencies.

This test is particularly valuable when:

  • Selecting excipients for direct compression formulations
  • Troubleshooting manufacturing issues related to powder flow
  • Developing new powder-based products
  • Establishing quality control specifications

The method applies to various pharmaceutical materials including active ingredients, excipients, and finished powder blends. Quality control departments regularly use this test to verify batch-to-batch consistency and ensure manufacturing processes remain reliable and reproducible.

Materials and Products Assessed

A scientist in a lab coat monitors powder flowing through a funnel into a container as part of a laboratory test on powder flow characteristics.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow testing is applicable to a specific range of powder materials commonly found in pharmaceutical applications. This test method provides valuable insights into powder flowability, which affects numerous manufacturing processes.

Suitable Powder Types

The Standard Funnel Method is particularly suitable for free-flowing pharmaceutical powders. These include excipients like microcrystalline cellulose, lactose, and dicalcium phosphate. Active pharmaceutical ingredients (APIs) with good flow properties can also be assessed effectively.

Granular materials used in tablet and capsule formulations are ideal candidates for this method. Many direct compression blends benefit from this assessment before tableting.

You’ll find this method especially valuable for testing:

  • Diluents: Lactose, mannitol, sorbitol
  • Disintegrants: Sodium starch glycolate, croscarmellose sodium
  • Glidants: Colloidal silicon dioxide, talc
  • Lubricants: Magnesium stearate, stearic acid

Typical Sample Characteristics

Samples tested via the Standard Funnel Method typically have particle sizes ranging from 100-1000 μm. The method works best with dry, non-cohesive powders that flow freely under gravity.

Your test samples should ideally have:

  • Moisture content below 3%
  • Bulk density between 0.3-1.5 g/cm³
  • Minimal electrostatic properties
  • Regular particle morphology

Powders should be properly conditioned at controlled temperature and humidity prior to testing. Most samples require 50-100g of material to obtain reliable results.

The particle size distribution should be relatively uniform to avoid segregation during testing.

Limitations on Material Use

You should avoid using this method for highly cohesive or very fine powders (below 50 μm). These materials often experience flow problems like bridging in the funnel.

The test is not suitable for:

  • Hygroscopic materials that absorb moisture during testing
  • Powders with extreme static charges
  • Materials with needle-like particles
  • Very dense powders (>2.0 g/cm³)
  • Highly compressible materials

Temperature and humidity significantly affect results, so materials sensitive to environmental conditions require special consideration.

The method doesn’t work well with wet granulations or materials with moisture content above 5%.

General Principles of Powder Flow Testing

Laboratory setup showing powder flowing through a transparent funnel into a container, with scientific instruments nearby on a clean bench.

Powder flow testing evaluates how easily powder materials move and flow under various conditions. These tests provide critical data for industries handling powders in manufacturing, storage, and processing operations.

Fundamentals of Flowability

Flowability refers to a powder’s ability to flow in a predictable and reliable manner. This property affects how powders behave during processing, packaging, and dispensing operations.

When examining powder flow, you need to consider both cohesive forces (particles sticking together) and gravitational forces. The balance between these determines how well a powder will flow.

Good powder flow is characterized by consistent movement without bridging, ratholing, or segregation. Poor flowing powders often show erratic behavior and can cause production interruptions.

Several classification systems exist to categorize powders based on flowability – from free-flowing to very cohesive. These classifications help you select appropriate handling equipment and processing parameters.

Parameters Measured

Flow rate measures how quickly powder passes through an opening and is often expressed in g/s or ml/s. This directly impacts production speed and efficiency.

Angle of repose quantifies the steepest angle at which powder remains stable without flowing. Lower angles (≤30°) indicate better flowability, while higher angles (≥45°) suggest poor flow properties.

Compressibility index and Hausner ratio evaluate how powder density changes under pressure. These calculations use both bulk and tapped densities to assess flow characteristics.

Key Flow Parameters:

  • Flow rate
  • Angle of repose
  • Bulk density
  • Tapped density
  • Compressibility
  • Cohesion
  • Wall friction

Shear testing measures the internal friction of powder samples, providing detailed information about flow behavior under various stress conditions.

Influencing Factors on Powder Flow

Particle size significantly impacts flow – generally, larger particles (>100μm) flow better than smaller ones (<50μm). Very fine powders often exhibit poor flow due to stronger cohesive forces.

Particle shape affects how particles interact. Spherical particles typically flow better than irregular, needle-shaped, or flaky particles that can interlock and resist movement.

Moisture content can dramatically alter powder flow. Even small increases in moisture can create liquid bridges between particles, reducing flowability.

Environmental conditions like humidity, temperature, and storage time influence flow properties. Powders may absorb moisture from humid air, leading to caking and reduced flowability.

Electrostatic charges, especially in dry environments, can cause particles to repel or attract each other, disrupting normal flow patterns.

Interpretation of Results and Industry Implications

Laboratory scene showing a funnel apparatus measuring powder flow into a container, surrounded by scientific tools and data charts on flow rates.

The data from the Ph. Eur. Standard Funnel Method provides critical insights that directly impact manufacturing decisions and product quality. Understanding these results helps you optimize formulations and processing parameters.

Analyzing Powder Flow Data

Flow rate measurements obtained through the funnel method are typically expressed in seconds or grams per second. Lower flow times indicate better flowability, while higher values suggest poor flow properties.

You should always compare your results against established acceptance criteria for your specific material. A common approach is creating flowability classifications:

  • Excellent flow: < 10 seconds
  • Good flow: 10-15 seconds
  • Fair flow: 16-20 seconds
  • Poor flow: > 20 seconds

Variability in results is equally important. High standard deviations between measurements often indicate inconsistent powder properties that may cause processing issues.

Impact on Product Quality and Manufacturing

Poor powder flow directly affects tablet weight variation, content uniformity, and dissolution profiles in pharmaceutical products. When powders flow inconsistently, you’ll experience challenges with die filling in tablet presses.

Manufacturing efficiency decreases with poorly flowing powders. Production speeds must be reduced to maintain quality, and equipment modifications may be necessary. This translates to higher production costs and reduced output.

You can use funnel test results to guide formulation decisions. Adding flow enhancers like colloidal silicon dioxide (0.2-0.5%) often improves flowability when test results are poor. Equipment selection also depends on these results—high-shear mixers may be needed for powders with poor flow properties.

Representative Use Cases and Examples

Laboratory setup showing a funnel with powder flowing into a container, illustrating a powder flow measurement process.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow has practical applications across various industries. Its standardized approach makes it valuable for quality control and material characterization.

Application for Pharmaceutical Powders

In pharmaceutical manufacturing, the funnel method helps evaluate flow properties of active pharmaceutical ingredients (APIs) and excipients. You can use this test to determine if a powder will flow consistently through tablet press hoppers during production.

For example, when formulating a direct compression tablet, you would test lactose and microcrystalline cellulose excipients to ensure proper flow characteristics. Poor flow can cause weight variations in final dosage forms.

The test also helps you determine:

  • Whether granulation is needed to improve powder flowability
  • If glidants (like silica) should be added to your formulation
  • How environmental conditions might affect your powder’s performance

Quality control departments routinely use this test to verify batch-to-batch consistency of raw materials.

Other Industrial Examples

Beyond pharmaceuticals, the funnel method finds applications in food processing, cosmetics, and chemical industries. Food manufacturers use it to test ingredients like flour, sugar, and powdered flavors.

In cement and construction materials testing, you can apply this method to evaluate the flow properties of fine aggregates and additives. This helps ensure consistent concrete quality.

Cosmetic producers rely on this test for:

  • Evaluating face powders and foundations
  • Testing raw materials for production
  • Validating manufacturing processes

The method is particularly valuable when you need to compare different powder lots or suppliers. For instance, a paint manufacturer might test various pigment powders to ensure they’ll flow properly through production equipment.

Best Practices for Implementation

A laboratory technician pouring powder into a standard funnel apparatus to measure powder flow, with scientific instruments and a clean lab environment in the background.

Implementing the Ph. Eur. Standard Funnel Method 2.9.36 correctly ensures reliable powder flow measurements for pharmaceutical applications. Attention to detail during setup and execution is critical for meaningful results.

Sample Preparation Recommendations

Material Conditioning: You should store powder samples in controlled environments (20-25°C, 40-60% relative humidity) for at least 24 hours before testing to ensure equilibration.

Quantity Preparation: Prepare at least 100g of sample for each test run. Use a standardized method to mix bulk samples, avoiding segregation of particles by size or density.

Particle Size Considerations: For materials with larger particles (>2mm), you may need to adjust the funnel diameter. Note any modifications in your test report.

Moisture Control: Check moisture content before testing. Even small changes can significantly affect flow properties, especially for hygroscopic materials.

Pre-test Handling: Minimize vibration or compression during transfer to prevent altering the powder’s natural flow characteristics.

Ensuring Reproducibility and Reliability

Equipment Verification: You should calibrate your funnel dimensions against reference standards quarterly. The outlet opening must maintain precise specifications (10.0±0.01mm).

Systematic Testing Protocol: Conduct at least three replicate measurements for each sample. Discard results with >5% variation and investigate the cause.

Environmental Controls: Maintain consistent testing conditions. Temperature fluctuations of even 3°C can alter flow results by up to 10% for some formulations.

Reference Standards: Include a reference standard powder (like microcrystalline cellulose) in your testing sequence to verify system performance.

Documentation: Record all testing parameters including:

  • Room temperature and humidity
  • Sample preparation details
  • Any deviations from standard protocol
  • Observations of unusual flow behavior

Comparison With Alternative Powder Flow Methods

The Ph. Eur. Standard Funnel Method 2.9.36 is one of several techniques used to evaluate powder flowability in pharmaceutical and other industries. Different methods provide complementary data that can help you select the most appropriate manufacturing processes.

Contrast With ASTM Methods

ASTM D6393 (Bulk Solids Characterization) differs from the Ph. Eur. method by measuring multiple flow properties rather than just flow rate. This comprehensive approach helps you predict powder behavior under various processing conditions.

ASTM B213 specifically addresses metal powders, using a calibrated funnel with standardized dimensions that may differ from the Ph. Eur. glass funnel. This method is tailored for metallurgical applications rather than pharmaceuticals.

ASTM D7891 employs a powder rheometer to measure dynamic flow properties. Unlike the static measurement of the funnel method, rheometers can simulate different processing forces and conditions.

Advantages and Limitations

The Ph. Eur. funnel method offers simplicity and repeatability with minimal equipment requirements. You can quickly assess basic flow characteristics without extensive training or complex data interpretation.

However, this method has notable limitations. It only works for relatively free-flowing powders and cannot evaluate cohesive materials that won’t flow through the funnel at all.

The funnel method provides a single data point (flow time) rather than comprehensive flow profiles. For complete characterization, you should combine it with additional tests like angle of repose or compressibility index.

Environmental factors such as humidity and static electricity can significantly affect results, requiring careful control of testing conditions for meaningful comparisons.

Frequently Asked Questions

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing. This test provides valuable data about material behavior in production environments.

What is the purpose of the Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow in assessing material properties?

The Ph. Eur. Standard Funnel Method 2.9.36 evaluates how easily pharmaceutical powders flow through a standardized funnel. This test measures the time it takes for a specific amount of powder to flow through the funnel’s orifice.

The method helps determine if a powder will flow consistently during manufacturing processes like tableting or capsule filling. Poor flowing materials can cause weight variations and dosing problems in final products.

The test serves as an early indicator of potential processing issues, allowing formulators to modify compositions or processing conditions before full-scale production.

How does the Ph. Eur. Standard Funnel Method 2.9.36 contribute to the quality control in pharmaceutical manufacturing?

The Standard Funnel Method provides a reproducible way to assess batch-to-batch consistency of pharmaceutical materials. By establishing acceptable flow time ranges, manufacturers can quickly identify when raw materials deviate from specifications.

Quality control teams use these measurements to approve or reject incoming materials before they enter production. This prevents costly manufacturing delays and potential product failures.

The method helps maintain compliance with regulatory requirements by ensuring consistent product performance across batches. Documentation of flow properties becomes part of a product’s quality history.

Which types of powders or granular materials are typically tested using the Standard Funnel Method 2.9.36, and why is it significant?

Pharmaceutical excipients like lactose, microcrystalline cellulose, and starch are commonly tested with this method. These materials form the bulk of many tablet and capsule formulations.

Active pharmaceutical ingredients (APIs) with sufficient quantity per dose may also undergo testing. Understanding API flow properties helps determine appropriate manufacturing methods.

Granulated materials produced during wet or dry granulation processes benefit from this testing. The method helps verify if granulation improved flow characteristics as intended.

What fundamental principles govern the operation of the Ph. Eur. Powder Flow method, and how do they relate to material behavior?

Gravity is the primary force driving powder flow through the funnel. The method measures how effectively particles overcome friction and cohesive forces when moving under gravity’s influence.

Particle size, shape, density, and surface characteristics all affect flow time results. Smaller, irregularly shaped particles typically flow more slowly due to increased surface area and cohesion.

Moisture content significantly impacts flow behavior by creating liquid bridges between particles. The method indirectly assesses how these physical properties combine to affect overall flowability.

Can you describe how the results of the Ph. Eur. Standard Funnel Method 2.9.36 are interpreted, and what implications they have for product development?

Results are typically reported as flow time in seconds for a specified powder mass. Shorter flow times indicate better flowing materials that will likely process more efficiently.

Comparative analysis between materials helps formulators select excipients with complementary properties. Blending a poorly flowing API with free-flowing excipients may improve overall mixture performance.

Flow time trends can signal potential stability issues when tracked over a product’s shelf life. Increasing flow times might indicate moisture uptake or particle agglomeration requiring formulation adjustments.

How does the Ph. Eur. Standard Funnel Method 2.9.36 compare to other powder flowability testing methods in terms of accuracy and application?

The Funnel Method offers simplicity and speed compared to more complex techniques like shear cell testing. However, it provides less detailed information about fundamental powder properties.

Unlike angle of repose measurements, which evaluate static powder behavior, the Funnel Method assesses dynamic flow under gravity. This better mimics conditions in feeding hoppers and fill systems.

The method complements rather than replaces techniques like Carr’s Index or Hausner Ratio. For comprehensive material characterization, formulators typically employ multiple test methods to develop a complete flowability profile.

A propos QUALTECH PRODUCTS INDUSTRY Science & Research

Ce que vous pouvez lire ensuite

ISO 4324:1977 – Measurement of the Angle of Repose: Evaluating Material Flow Properties in Bulk Solids Handling
ASTM D6393/D6393M-21 Standard Test Method for Bulk Solids Characterization by Carr Indices: Essential Applications for Powder Flow Analysis in Industrial Processing
MPIF Standard 01 Method for Sampling Metal Powders: Essential Testing Protocol for Quality Assurance in Powder Metallurgy Manufacturing

OBTENIR UN DEVIS GRATUIT

Contactez-nous - Nous aimerions avoir de vos nouvelles

Obtenez dès maintenant des informations sur les produits, le support technique, le service client, les ventes, les relations publiques, les services professionnels et les partenaires. Vous pouvez également nous faire part de vos commentaires sur notre site Web.
Merci de bien vouloir remplir ce formulaire. Un de nos spécialistes répondra à votre demande sous peu. Vous pouvez également nous contacter via les coordonnées de la société aux États-Unis, en Australie ou au Royaume-Uni.

    Veuillez noter que nous respectons votre vie privée et gardons vos coordonnées strictement confidentielles.

    ASTM
    ANSI
    bsi
    CEI
    AATCC
    TÜV
    ISO
    VACARME

    © 1978 - 2025 INDUSTRIE DES PRODUITS QUALTECH Conditions d'utilisation termes et conditions Biscuits Nous contacter

    HAUT
    Ce site Web utilise des cookies pour améliorer votre expérience, cependant, nous respectons votre vie privée et les cookies ne collectent que des données anonymes. Nous respectons votre vie privée et vous pouvez vous désinscrire, si vous le souhaitez.
    Paramètres des cookiesAccepter tout
    Gérer le consentement

    Aperçu de la confidentialité

    Ce site Web utilise des cookies pour améliorer votre expérience lorsque vous naviguez sur le site Web. Parmi ceux-ci, les cookies classés comme nécessaires sont stockés sur votre navigateur car ils sont essentiels au fonctionnement des fonctionnalités de base du site Web. Nous utilisons également des cookies tiers qui nous aident à analyser et à comprendre comment vous utilisez ce site Web. Ces cookies ne seront stockés dans votre navigateur qu'avec votre consentement. Vous avez également la possibilité de refuser ces cookies. Mais la désactivation de certains de ces cookies peut affecter votre expérience de navigation.
    Nécessaire
    Toujours activé
    Les cookies nécessaires sont absolument essentiels au bon fonctionnement du site Web. Ces cookies assurent les fonctionnalités de base et les éléments de sécurité du site Web, de manière anonyme.
    BiscuitDuréeDescription
    cookielawinfo-checkbox-analytics11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Le cookie est utilisé pour stocker le consentement de l'utilisateur pour les cookies de la catégorie « Analytics ».
    cookielawinfo-checkbox-fonctionnel11 moisLe cookie est défini par le consentement aux cookies du RGPD pour enregistrer le consentement de l'utilisateur pour les cookies de la catégorie « Fonctionnel ».
    cookielawinfo-case à cocher-nécessaire11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Les cookies sont utilisés pour stocker le consentement de l'utilisateur pour les cookies dans la catégorie « Nécessaire ».
    cookielawinfo-checkbox-autres11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Le cookie est utilisé pour stocker le consentement de l'utilisateur pour les cookies de la catégorie "Autre".
    cookielawinfo-checkbox-performance11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Le cookie est utilisé pour stocker le consentement de l'utilisateur pour les cookies de la catégorie « Performance ».
    visualisé_cookie_policy11 moisLe cookie est défini par le plugin GDPR Cookie Consent et est utilisé pour stocker si l'utilisateur a consenti ou non à l'utilisation de cookies. Il ne stocke aucune donnée personnelle.
    Fonctionnel
    Les cookies fonctionnels aident à exécuter certaines fonctionnalités telles que le partage du contenu du site Web sur les plateformes de médias sociaux, la collecte de commentaires et d'autres fonctionnalités tierces.
    Performance
    Les cookies de performance sont utilisés pour comprendre et analyser les principaux indices de performance du site Web, ce qui contribue à offrir une meilleure expérience utilisateur aux visiteurs.
    Analytique
    Les cookies analytiques sont utilisés pour comprendre comment les visiteurs interagissent avec le site Web. Ces cookies aident à fournir des informations sur les mesures telles que le nombre de visiteurs, le taux de rebond, la source du trafic, etc.
    Publicité
    Les cookies publicitaires sont utilisés pour fournir aux visiteurs des publicités et des campagnes marketing pertinentes. Ces cookies suivent les visiteurs sur les sites Web et collectent des informations pour proposer des publicités personnalisées.
    Autres
    Les autres cookies non classés sont ceux qui sont en cours d'analyse et qui n'ont pas encore été classés dans une catégorie.
    Enregistrer & appliquer
    fr_FRFrançais
    en_USEnglish da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês fr_FRFrançais
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português