INDÚSTRIA DE PRODUTOS QUALTECH

INDÚSTRIA DE PRODUTOS QUALTECH

Valores reais para nossos clientes e clientes

EUA: +1 720 897 7818
Reino Unido: +44 161 408 5668
AU: +61 2 8091 0618

E-mail: [email protected]

INDÚSTRIA DE PRODUTOS QUALTECH
2186 South Holly Street, Denver, Colorado 80222, EUA

Abrir no Google Maps
  • Bem-vindo
  • Instrumentos
    • Medição de Viscosidade
      • copos de fluxo
        • Copo de fluxo ISO ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Copos Ford ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Copa Zahn ASTM D1084 ASTM D4212 BS EN 535
        • Copa IWATA Japonesa
        • DIN Copo DIN 53211
        • Copo de pressão ISO 2811-4 BS 3900-A22
        • Suportes e suportes para copos de fluxo de viscosidade
      • viscosímetro rotacional
        • viscosímetro portátil
        • viscosímetro portátil
        • Viscosímetro Rotacional Digital
        • Viscosímetro de fuso com tela sensível ao toque
        • Viscosímetro Krebs Stormer
        • Viscosímetro de alta temperatura
        • Viscosímetro de cone e placa
        • Banho de Viscosidade
        • viscosímetro Laray
        • Viscosímetro de Farinha e Amido
    • Teste de Aparência
      • Lustro
        • medidor de brilho
        • Medidor de brilho com microlente
        • Glossímetro Haze
        • Glossímetro Ângulo de 45°
        • Glossímetro Ângulo de 75°
        • Glossímetro de bolso
        • Medidor de brilho com tela sensível ao toque
        • Leitor de cores e medidor de brilho
        • Glossímetro em linha
        • Mini Glossímetro
      • Transparência Névoa Clareza
        • medidor de névoa
        • Medidor portátil de turbidez
        • Medidor de Turbidez de Mesa
      • Cor
        • Leitor de cores portátil
        • Leitor de cores portátil
        • Leitor de cores de bancada
        • Espectrofotômetro portátil
        • Espectrofotômetro de mesa
        • Armário de avaliação de cores
        • Estação de prova de cores
        • Comparador de cores Gardner
        • Tintômetro Lovibond
        • Cartões de cores RAL
        • Cartões de cores Pantone
        • Leitor portátil de cores para líquidos
        • Colorímetro portátil para pós
        • Colorímetro portátil para produtos farmacêuticos
        • Software de correspondência de cores
      • Brancura
        • Medidor portátil de brancura
        • Medidor portátil de brancura
        • Medidor de brancura de desktop ISO
        • Medidor de brancura CIE D65
        • Dispositivo de Medição de Porosidade
      • Espessura
        • Medidores de Espessura de Filme Úmido
        • Medidor de Espessura de Filme Úmido Roda
        • Medidor de Espessura de Revestimento
        • Medidor de Espessura Ultrassônico
        • Medidor de Inspeção de Pintura
        • Medidor de espessura de banana
        • paquímetro
        • Medidor de Espessura da Folha
      • Opacidade de reflexão
        • Medidor de refletância
        • Medidor de refletância espectral portátil
        • Medidor de refletância de mesa
        • criptômetro digital
        • Medidor de refletância infravermelha
        • Medidor de Transmissão de Luz
        • Medidor de transmissão de luz de vidro e lente
        • Medidor de Transmitância de Luz 365nm & 550nm & 850nm & 940nm
        • Medidor de Transmitância de Luz UV
        • Medidor de Transmitância de Luz IR
        • Medidor de Transmitância de Luz Azul
        • Retrorrefletômetro de ângulo único
        • Retrorrefletômetro multiângulo
    • Série de aplicativos
      • Dip Coater
      • Aplicador automático de filme a vácuo
      • Aplicador de filme automático com mesa de aplicação de filme de vidro e aço inoxidável
      • Testador de Nivelamento
      • Testador SAG
      • Aplicadores de filme
      • Revestimento de barra de arame
      • pistola de pintura
      • Revestimento giratório
      • Mesa de Vácuo para Aplicação de Filme
      • Superfície de rebaixamento
      • Gráficos Checkerboard
      • Nitrogênio Dip Coater
      • Revestimento por imersão de várias camadas
      • Revestimento por imersão de temperatura constante
      • Casterguide para aplicador de filme de cubo
      • Câmara Automática de Pulverização de Substrato
      • Cabine de lavagem com água
    • Medição de Umidade
      • Karl Fischer titulador
      • Titulador Coulométrico Karl Fischer
      • Medidor Digital de Umidade
      • Analisador de Umidade
      • Evaporador rotativo
    • Teste de propriedades físicas
      • Fineza de Moagem
        • Fineness of Grind Gauges
        • Fineness elétrico de medidores de moagem
      • Tempo de secagem
        • Registrador de Tempo de Secagem
        • Registrador Automático de Tempo de Secagem
        • Testador de estado seco
      • Densidade
        • Copos de densidade
        • Picnômetro de Gás
        • Medidor de Densidade Portátil
        • Medidor de densidade de bancada
        • Densitômetro portátil
        • Densitômetro de Transmissão
        • Densitômetro de Transmissão Óptica
        • Medidor de densidade de flutuabilidade
        • Scott Volumeter
        • Fluxômetro Hall
        • Medidor de Vazão de Carney
        • Medidor de densidade aparente ASTM D1895 Método A
        • Medidor de densidade aparente ASTM D1895 Método B
        • Medidor de densidade aparente ISO R60
        • Medidor de Densidade
        • Volumetizador de Densidade Aparente
        • Medidor de densidade de toque
        • Pó Ângulo de Repouso
        • Testador de características do pó
        • Sistema Automático de Análise de Limpeza de Filtro
        • Picnômetro Automático de Densidade Verdadeira
        • Medidor de Vazão Gustavsson
        • Medidor de Densidade Arnold
        • Medidor de densidade aparente método ISO R60
        • Medidor de densidade aparente ASTM D1895 Método A
        • Medidor de densidade aparente ASTM D1895 Método B
        • Medidor de densidade aparente ASTM D1895 Método C
        • Medidor Automático de Densidade para Líquidos
        • Medidor de Densidade para Líquidos
        • Gabinete de conforto acústico
      • Condutividade e pH
        • Medidor de pH de bolso
        • Medidor de pH portátil
        • Medidor de pH portátil
        • Medidor de pH de mesa
        • Medidor de Condutividade Portátil
        • Medidor Portátil de Condutividade
        • Condutividade de mesa e medidor de pH
        • Eletrodo de pH
        • Eletrodo Seletivo de Íon
        • Eletrodo de Oxigênio Dissolvido
        • Eletrodo de referência
        • Eletrodo de Condutividade
        • Eletrodo de Metal
        • Eletrodo de temperatura
      • Refração
        • Refratômetro portátil
        • Refratômetro digital portátil
        • Refratômetro digital automático
        • Refratômetro digital
        • Refratômetro Analógico
      • Rugosidade
        • Medidor de Rugosidade de Superfície
      • Temperatura e Umidade
        • Barra MFFT com tela sensível ao toque
        • medidor de umidade
        • termômetro de laboratório
        • Termômetro infravermelho
        • Testador de ponto de fulgor de copo fechado
        • Testador de ponto de fulgor de copo fechado de baixa temperatura
        • Testador Automático de Ponto de Inflamação em Copo Fechado
        • Testador de ponto de fulgor Abel
        • Testador de ponto de fulgor de copo aberto
        • Testador de ponto de fulgor de copo aberto de baixa temperatura
        • Testador de Ponto de Amolecimento
        • Aparelho de ponto de fusão
        • Testador de ponto de fusão com gravação de vídeo
        • testador de ponto de fusão
        • Microscópio testador de ponto de fusão
        • Analisador Óptico Térmico
        • Testador de Deflexão de Calor
      • Medição de Tensão
        • Medidor de Tensão Superficial Du Noüy Ring
        • Medidor de Tensão Superficial Placa Wilhelmy
      • Medição de tamanho de partícula
        • Analisador de tamanho de partícula
        • Agitador de peneira de laboratório
    • Teste de Propriedades Mecânicas
      • Instrumentos de teste de flexibilidade e deformação
        • Testador de dobra em T
        • Testador de curvatura de mandril cilíndrico
        • Testador de curvatura de mandril cônico
        • testador de ventosa
        • testador de socos de bola
        • testador de compressão
        • Testador de Esmagamento de Bordas
        • Testador de força de explosão de papel
        • Testador de Resistência à Explosão de Papelão
        • Testador de Resistência à Explosão Têxtil
        • Testador de compressão de caixa
        • testador de esmagamento de rolo
        • Testador de flexibilidade de filme de tinta
        • Substratos de amostra do testador de flexibilidade Putty
        • Testador automático de torque de tampa de garrafa
      • Instrumentos de teste de impacto
        • Testador de impacto DuPont
        • Testador de impacto para serviços pesados
        • Testador de impacto universal
        • Testador de impacto de dardo caindo
        • Testador de impacto de painel de madeira
      • Instrumentos de teste de adesão
        • Testador de Corte Cruzado de Adesão
        • Testador de corte cruzado de adesão de lâmina única
        • Kit de teste de régua de corte cruzado de adesão
        • Kit de Teste de Adesão X Corte
        • Testador Automático de Corte Cruzado de Adesão de Tinta
        • Testador de adesão pull-off totalmente automático
        • Testador Automático de Adesão Pull-Off
        • Testador de adesão de descamação
        • Testador de atrito de coeficiente COF
        • Peel Tester para Adesivos
        • Testador de Loop Tack
        • Testador de Peeling de Adesão
      • Instrumentos de Teste de Dureza
        • Testador de Dureza Lápis
        • Testador de dureza de lápis de mesa
        • Testador de Dureza de Lápis Motorizado
        • Caneta de Dureza Dur-O-Test
        • Testador de dureza de pêndulo
        • Testador automático de arranhões
        • Testador Mar Automático
        • Ferramenta para arranhar
        • Testador de dureza de rebote Leeb
        • Testador Portátil de Dureza Leeb
        • Testador de dureza portátil
        • Testador digital de dureza de bolso
        • Testador portátil de dureza Rockwell & Brinell
        • Testador portátil de dureza Rockwell
        • Testador de Dureza Brinell de Carga Pequena
        • Testador de dureza Brinell com tela sensível ao toque
        • Testador de Dureza Brinell
        • Testador de dureza múltipla
        • Testador de dureza Rockwell com tela sensível ao toque
        • Testador de Dureza Rockwell
        • Testador de Dureza Superficial Rockwell
        • Testador de dureza Rockwell de amostra grande
        • Testador de dureza de plástico Rockwell
        • Testador de Dureza Vickers
        • Testador de dureza Vickers de carga pequena
        • Testador de Dureza Knoop
        • Testador de microdureza com tela sensível ao toque
        • Testador de microdureza
        • Testador de indentação Buchholz
      • Instrumentos de teste de abrasão
        • Testador de esfoliação por abrasão úmida
        • Testador avançado de abrasão úmida
        • Testador de Abrasão Rotativa de Plataforma Única
        • Testador de Abrasão Rotativa de Plataforma Dupla
        • Testador de Abrasão Linear
        • Crockmeter manual
        • Crockmeter Elétrico
        • Crockmeter Elétrico Rotativo
        • Crockmeter rotativo
        • Crockmeter circular de couro
        • Gakushin Crockmeter
        • Testador de Abrasão e Pilling Martindale
        • Wyzenbeek Oscillatory CylinderTester
        • Testador de Abrasão RCA
        • Testador de abrasão de areia caindo
        • Escala de Transferência Cromática de 9 Passos AATCC
        • Cartões de teste de cores em escala de cinza AATCC
        • Testador de Abrasão Avançado
      • Sistemas de teste de tração
        • Máquina de tração de coluna única
        • Máquina de tração de coluna dupla
      • Sistemas de teste de fragilidade
        • Sistema de teste de fragilidade
        • testador de fragilidade
      • Teste de lavagem de solidez da cor
        • Testador de solidez da cor à lavagem
    • Instrumentos de teste climático
      • Equipamento de teste de intemperismo
        • Câmara de teste de intemperismo UV de mesa
        • Câmara de teste de intemperismo de luz ultravioleta
        • Câmara de Teste de Intemperismo de Xenônio
        • Câmara de teste de xenônio com sistema de filtro de água
        • Câmara de teste de intemperismo de arco de xenônio
      • Controle de Corrosão
        • Câmara de Pulverização Salina
        • Câmara de Teste de Névoa Salina
        • Câmara de Teste de Pulverização Salina Avançada
      • Temperatura e Umidade
        • Forno de Laboratório
        • Forno de laboratório à prova de explosão
        • Mufla Forno
        • Forno a Vácuo de Laboratório
        • Câmara de Luz Vertical
        • Banho de baixa temperatura
        • Laboratório Banho-maria
        • Banho de óleo de laboratório
        • Câmara de Teste Climático
        • Incubadora de Banho Seco
      • Cura UV
        • Equipamento de Cura UV
        • Radiômetro de Luz UV
    • Moagem de Dispersão de Mistura
      • Misturador Elétrico de Laboratório
      • Agitador Elétrico de Laboratório
      • Misturador de laboratório automático com temporizador
      • Dispersor de laboratório de alta velocidade
      • Dispersor de uso geral para laboratório
      • Dispersor de laboratório com temporizador
      • Dispersor automático de laboratório com temporizador e medição de temperatura
      • Dispersor e misturador de alto cisalhamento para laboratório à prova de explosão
      • Fábrica de Cestas de Laboratório
      • Agitador de latas de tinta de braço duplo
      • Agitador Automático de Tinta
      • Agitador de tinta pneumático
      • Dispensador de tinta
      • Dispensador Automático de Tinta
      • Agitador Orbital Automático
      • Agitador de placas de laboratório
      • Agitador Orbital Grande
      • Dispersor a Vácuo de Laboratório
      • Dispersor a Vácuo Avançado
      • Moinho Automático de Pó
      • Moinho de pó de mesa
      • moinho de três rolos
      • Moedor Muller
      • Moinho de Areia Horizontal de Laboratório
      • Misturador Pneumático de Laboratório
      • Misturador Pneumático com Elevador
      • Nano Mixer
      • Dispersor de laboratório a vácuo de alta velocidade
      • Emulsificante de Laboratório
      • Laboratório V Blender
    • Teste de Propriedades da Tinta de Impressão
      • Testador de Abrasão por Solvente MEK
      • Testador avançado de abrasão de solvente MEK
      • Imprensa de prova de tinta
      • Testador de tinta de impressão
    • Instrumentos de teste de laboratório
      • Balanças de Laboratório
      • Balanças de pesagem de laboratório com tela sensível ao toque colorida
      • Testador Schopper Riegler
      • Testador Hidráulico Schopper Riegler
      • Testador Digital Schopper Riegler
      • Testador de liberdade padrão canadense
      • Testador de ponto de gota
      • Testador de ponto de gota ASTM D2265
      • Testador Automático de Ponto de Gota ASTM D2265
      • Balanças de bancada
      • Balanças de plataforma
      • Testador de Permeabilidade a Gás
      • Testador de Permeabilidade ao Vapor de Água
    • Preparação de Amostras Científicas
      • Preparação de amostras têxteis científicas
        • Cortador de amostras GSM
    • Instrumentos de teste têxtil
      • Testador de Abrasão MIE
      • Testador de abrasão de desgaste universal
    • Instrumentos de Teste Ambiental
      • Medidor portátil da qualidade do ar
      • Amostrador de ar ambiente
    • Instrumentos de teste de plástico
      • Testador de impacto Charpy Izod
      • Testador de Impacto Charpy
      • Testador de impacto Izod
      • Testador de índice de fluxo de fusão
    • Instrumentos de teste de papel
      • Testador Schopper Riegler
      • Testador Hidráulico Schopper Riegler
      • Testador Digital Schopper Riegler
      • Testador de liberdade padrão canadense
      • Calibre ISO 534
      • Medidor Automático de Espessura de Papel ISO 534
      • Testador de força de explosão de papel
      • Testador de Resistência à Explosão de Papelão
    • Instrumentos de teste de concreto
      • Martelo de recuperação de concreto
      • Martelo de rebote de concreto digital
  • Equipamento
    • Dispersores de Produção Industrial
      • Dispersor Industrial
      • Dispersor Industrial de Eixo Duplo
      • Dispersor Industrial Multieixo
      • Dispersor a Vácuo Industrial
      • Dispersor de Alta Viscosidade
      • Dispersor no tanque
      • Dispersor pressurizado no tanque
      • Dispersor a vácuo no tanque
      • Lâminas de Dispersão
    • Misturadores e agitadores de produção industrial
      • Misturador no tanque
    • Misturadores de Produção Industrial
      • V Blender
      • Liquidificador de Cone Duplo
    • Moinhos e trituradores de produção industrial
      • Cesteiro Industrial
      • moinho de três rolos
  • Produtos químicos
  • Contate-nos
  • Sobre nós
GRATUITAMENTECITAR
  • Lar
  • Science & Research
  • ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

por QUALTECH PRODUCTS INDUSTRY Science & Research / Saturday, 21 June 2025 / Publicado em Science & Research

ISO 13468-2 is a specialized test method that measures how much light passes through plastic materials. This dual-beam approach helps manufacturers understand the propriedades ópticas of their plastic products, which is crucial for applications where clarity matters. The test provides valuable data about a material’s total luminous transmittance, which directly impacts product quality in industries like automotive, packaging, and electronics.

A laboratory scene showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

When plastic products need to be transparent or translucent, this test becomes essential. It works by comparing the intensity of light that passes through a plastic sample to a reference beam. You can use this method to evaluate various plastic materials including films, sheets, and molded parts. Unlike similar methods, ISO 13468-2’s dual-beam system compensates for light source fluctuations, making it more accurate.

Principais conclusões

  • ISO 13468-2 measures how much light passes through plastic materials using a dual-beam system for greater accuracy.
  • The test is vital for quality control in industries requiring transparent plastics like packaging, electronics, and automotive components.
  • Proper implementation of this standard helps you ensure consistent optical properties and compare different plastic materials objectively.

Overview of ISO 13468‑2 and Its Significance

A laboratory scene showing a dual-beam spectrophotometer analyzing a transparent plastic sample with light beams passing through it, alongside charts representing data analysis.

ISO 13468-2 provides a standardized method for determining total luminous transmittance of transparent plastics using a double-beam instrument. This test standard is essential for quality control and material specification in industries where optical clarity of plastics is critical.

Purpose of the Test Standard

ISO 13468-2 was developed to provide a reliable way to measure how much light passes through transparent plastic materials. The standard specifically focuses on the visible spectrum region, which matters most for optical applications.

This test helps manufacturers ensure their plastic products meet required transparency levels. When you need to verify if a plastic material will allow sufficient light transmission for applications like window glazing, protective screens, or optical components, this standard provides the answer.

The results from this test are expressed as a percentage of total luminous transmittance, giving you a clear quantitative value to compare against requirements or specifications.

Scope and Applicability

ISO 13468-2 applies to planar transparent plastics and is particularly useful for materials between 1mm and 10mm thick. The standard is designed for testing using double-beam instruments, which offer improved accuracy over single-beam methods.

You can use this test method for:

  • Acrylic sheets
  • Polycarbonate panels
  • Transparent polymer films
  • Other clear plastic materials

The test is valuable in industries such as:

  • Automotive (for windows and light covers)
  • Construction (for glazing materials)
  • Electronics (for display screens)
  • Packaging (for clear containers)

This standard helps you assess optical quality and ensure consistency across production batches.

Comparison with ISO 13468-1

ISO 13468-2 differs from ISO 13468-1 primarily in the instrumentation used. While ISO 13468-1 uses a single-beam instrument, ISO 13468-2 employs a double-beam instrument that provides several advantages.

The double-beam approach offers:

  • Higher accuracy: By simultaneously measuring the reference and sample beams
  • Better stability: Less affected by light source fluctuations
  • Improved reliability: Reduces errors from environmental variations

You’ll find that double-beam measurements are less susceptible to drift over time. This makes ISO 13468-2 preferable when higher precision is required for quality control or research applications.

However, ISO 13468-1 might be sufficient for routine testing where ultimate precision isn’t critical, as single-beam equipment is typically less expensive and simpler to operate.

General Principles of Total Luminous Transmittance Measurement

A laboratory setup showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

The measurement of total luminous transmittance involves several key optical principles that help determine how much light passes through transparent plastic materials. These measurements are critical for quality control and product specifications in various industries.

Definition of Total Luminous Transmittance

Total luminous transmittance (τv) represents the ratio of transmitted luminous flux to incident luminous flux through a transparent material. Simply put, it measures how much visible light passes through a plastic sample.

This property is expressed as a percentage or decimal value between 0 and 1. A value of 100% indicates perfect transparency where all incident light passes through the material.

The measurement accounts for both direct transmission and diffuse transmission. Direct transmission occurs when light passes straight through without changing direction. Diffuse transmission happens when light scatters while passing through the material.

For plastic materials, this property helps determine optical clarity and is essential for applications requiring specific light transmission characteristics.

Fundamental Optical Concepts

When light interacts with transparent plastics, several phenomena occur simultaneously. Light can be transmitted, reflected, absorbed, or scattered by the material.

Transmission follows Snell’s Law, where light bends at the interface between different materials based on their refractive indices. This principle is fundamental to understanding how light travels through plastics.

Key optical factors affecting transmittance:

  • Material thickness
  • Surface roughness
  • Internal structure
  • Presence of additives or colorants
  • Wavelength of incident light

The human eye perceives light differently across the visible spectrum (380-780 nm). ISO 13468 accounts for this by using CIE Standard Illuminant D65 and the photopic response of the human eye to weight measurements.

Role of Dual‑Beam Spectrophotometry

Dual-beam spectrophotometry provides advantages over single-beam methods described in ISO 13468-1. This technique uses two light paths: one passing through the sample and one reference path.

The dual-beam approach automatically compensates for fluctuations in light source intensity, detector sensitivity, and environmental conditions. This results in more accurate and reliable measurements.

The spectrophotometer splits light into wavelengths across the visible spectrum. It then compares the intensity of light through both paths to determine transmittance at each wavelength.

Benefits of dual-beam systems:

  • Higher accuracy
  • Better repeatability
  • Reduced measurement time
  • Automatic compensation for instrument drift

These systems are particularly valuable for quality control applications where precise measurements are required for product certification and specification compliance.

Specific Use and Intended Purpose

A laboratory scene showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

ISO 13468-2 provides a standardized method for measuring how much light passes through transparent plastic materials. This test helps manufacturers ensure quality control and select appropriate materials for specific applications where light transmission is important.

Evaluation Objectives

ISO 13468-2 measures the total luminous transmittance of transparent plastics using a double-beam spectrophotometer. This test determines what percentage of visible light passes through a plastic sample.

Unlike single-beam methods (ISO 13468-1), the double-beam approach offers higher accuracy by comparing the test sample against a reference simultaneously.

The standard works best with colorless or faintly tinted plastics up to 10mm thick. Thicker samples can be tested if the instrument allows, but results may not be comparable to standard measurements.

The test specifically excludes plastics containing fluorescent materials, as these would affect measurement accuracy.

Industry Applications

This standard is vital in industries requiring materiais transparentes with specific light transmission properties. Automotive manufacturers use it to test windshields and light covers for proper visibility and safety compliance.

Electronics producers rely on it for display screens and protective covers. The packaging industry needs it to verify that clear containers meet appearance and protection requirements.

Medical device makers use this test to ensure proper light transmission through diagnostic equipment, protective shields, and containers.

Construction companies apply this standard when selecting transparent materials for windows, skylights, and light fixtures. The test helps verify materials will provide expected natural lighting levels.

Benefits in Material Selection

Using ISO 13468-2 helps you make better decisions when choosing transparent plastics. You can objectively compare different materials based on their light transmission properties rather than visual inspection alone.

The test identifies subtle differences between similar-looking materials that might perform differently in your application. This prevents costly mistakes in material selection.

When developing new products, you can use test results to balance light transmission with other properties like impact resistance or UV protection.

The standard also helps you verify supplier claims about material properties. You can confirm that the materials you receive consistently meet your specifications for light transmission.

Materials and Products Covered by ISO 13468‑2

A laboratory scene showing a dual-beam instrument measuring light passing through a clear plastic sheet to analyze its luminous transmittance.

ISO 13468-2 specifically addresses transparent and substantially colorless plastic materials for which total luminous transmittance measurements are required. This standard provides a reliable method for evaluating light transmission properties using a double-beam scanning spectrophotometer.

Applicable Types of Plastic Sheets and Films

ISO 13468-2 applies to planar transparent plastics that allow light to pass through with minimal distortion. This includes acrylic sheets (PMMA), polycarbonate panels, polyethylene terephthalate (PET) films, and other clear thermoplastics.

The standard is particularly useful for testing optical-grade polymers used in displays, windows, and covers. Materials like clear polystyrene, transparent polyvinyl chloride (PVC), and polypropylene films commonly undergo this testing.

You can apply this standard to both rigid plastic sheets and flexible films, as long as they maintain planar geometry during measurement.

Sample Characteristics

Samples tested under ISO 13468-2 must be transparent or substantially colorless. The material should have minimal internal scattering to provide accurate transmittance values.

The standard works best with materials that have:

  • Uniform thickness throughout the test area
  • Planar surfaces without significant warping
  • Limited surface defects that might scatter light
  • No fluorescent additives (materials containing fluorescent compounds cannot be tested)

Sample preparation typically requires clean, dust-free specimens with minimal surface scratches or imperfections. Your samples should be properly conditioned according to relevant standards before testing.

Industries Utilizing This Standard

The automotive industry relies on ISO 13468-2 when developing and testing transparent plastics for headlamp covers, windows, and displays. Light transmission properties directly impact safety and functionality.

Building and construction sectors use this standard to evaluate glazing materials, skylights, and transparent building elements. The optical clarity and light transmission are critical for energy efficiency.

Electronics manufacturers apply these tests to screen protectors, display covers, and optical components. You’ll find this standard referenced in specifications for:

  • Consumer electronics
  • Medical device displays
  • Optical instruments
  • Lighting fixtures
  • Photovoltaic panel covers

Packaging industries also utilize this standard when developing transparent films and containers that require specific light transmission properties.

Implementation and Best Practices

A scientist in a laboratory using a dual-beam spectrophotometer to test transparent plastic samples for light transmission, with technical equipment and charts in the background.

Proper implementation of ISO 13468-2 requires attention to sample preparation, environmental factors, and careful technique to ensure reliable results when measuring total luminous transmittance of transparent plastics.

Optimizing Sample Preparation

Sample preparation is critical for accurate measurements. Clean your specimens thoroughly with a lint-free cloth to remove any dust, fingerprints, or contaminants that could affect light transmission.

When cutting samples, avoid creating stress marks or scratches that might scatter light. A sharp cutting tool is essential to create clean edges.

For best results, samples should have parallel surfaces and uniform thickness. Ideally, prepare specimens between 1 mm and 10 mm thick, though thicker samples can be measured if your instrument allows.

Let specimens acclimate to the testing environment for at least 2 hours before testing to avoid temperature-related distortions.

Environmental Considerations

Temperature and humidity can significantly impact test results. Maintain a controlled laboratory environment of 23°C ± 2°C and 50% ± 5% relative humidity as specified in ISO 291.

Shield the testing area from direct sunlight and other bright light sources that might interfere with measurements.

Vibration can affect instrument stability, so place your spectrophotometer on a vibration-free surface.

Dust particles can scatter light and alter readings. Regularly clean the instrument and testing area to minimize contamination.

Keep the laboratory free from airborne contaminants that might settle on samples during testing.

Ensuring Accuracy and Repeatability

Calibrate your double-beam spectrophotometer regularly using certified reference materials. This ensures your baseline measurements remain consistent over time.

Take multiple readings at different points on each specimen to account for any material inconsistencies. A minimum of three measurements is recommended.

Position samples consistently in the instrument holder for each test. Even slight variations in placement can affect results.

Keep detailed records of all testing parameters including:

  • Sample thickness
  • Environmental conditions
  • Instrument settings
  • Calibration dates

Compare your results with those from ISO 13468-1 (single-beam method) periodically as a cross-check. Significant differences might indicate instrument issues.

Interpreting and Applying Test Results

A scientist in a laboratory using a dual-beam spectrophotometer to test the transparency of a plastic sample.

The data collected from ISO 13468-2 testing provides valuable insights into material performance and quality. Proper interpretation of these results is essential for making informed decisions about material selection and product development.

Understanding Result Significance

Total luminous transmittance values obtained through ISO 13468-2 testing directly reflect how much visible light passes through the plastic material. Higher percentages indicate greater transparency, typically desirable for applications requiring optical clarity.

When interpreting results, consider the specific application requirements. For example, a 92% transmittance might be excellent for packaging but insufficient for precision optical components.

Test variability should be accounted for when analyzing results. Factors like specimen thickness, surface quality, and internal haze can influence measurements. Specimens thicker than 10mm can be measured but may not produce results comparable to standard thickness samples.

Remember that this test method applies specifically to transparent or substantially colorless plastics. Even faintly tinted materials can be evaluated, but heavily colored or fluorescent plastics require different testing approaches.

Case Study: Real-World Example

A manufacturer of display covers for electronic devices used ISO 13468-2 testing to compare three polycarbonate formulations. The results showed:

Material Espessura Total Luminous Transmittance
Formula A 2.0mm 89.5%
Formula B 2.0mm 91.2%
Formula C 2.0mm 90.3%

Formula B was selected for production despite its higher cost because the 1.7% improvement in light transmission significantly enhanced display brightness and readability.

The company also established a quality control threshold of 90% minimum transmittance. This benchmark ensured consistent optical performance across production batches. Any material falling below this threshold was rejected or relegated to non-display applications.

Implications for Product Design

Your product design can benefit greatly from understanding total luminous transmittance properties. Higher transmittance values generally correlate with better optical clarity and aesthetics in transparent applications.

Consider establishing minimum transmittance specifications based on your specific product requirements. Medical devices might require 92%+ transmittance, while general consumer goods might accept 85%+.

Material aging can affect transmittance over time. You should test aged samples to predict long-term performance, especially for outdoor applications where UV exposure occurs.

Remember that transmittance is just one property. Balance it with other material characteristics like impact resistance, chemical resistance, and processability when making final material selections.

Double-beam testing per ISO 13468-2 typically provides more accurate results than single-beam methods, particularly for quality-critical applications where precise measurements matter.

Comparison with Related Standards and Methods

A laboratory scene showing scientific equipment testing the light transmission of plastic samples with beams of light passing through transparent sheets.

Understanding how ISO 13468-2 relates to other testing standards helps laboratories select the most appropriate method for their specific application. Different standards offer various advantages depending on the material being tested and the required precision.

Comparison with ASTM Test Methods

ISO 13468-2 shares similarities with ASTM D1003, which measures haze and luminous transmittance of transparent plastics. However, ASTM D1003 uses a different light source and detection system than ISO 13468-2.

While ISO 13468-2 specifically uses a double-beam spectrophotometer, ASTM D1003 can utilize either a hazemeter or spectrophotometer.

Another related standard is ASTM E903, which measures solar transmittance and reflectance. This differs from ISO 13468-2 as it focuses on solar radiation rather than just visible light.

Key Differences:

  • ISO 13468-2: Double-beam instrument, visible light range
  • ASTM D1003: Can use single-beam, measures haze and transmittance
  • ISO 13468-1: Single-beam instrument alternative

Advantages and Limitations

The double-beam system in ISO 13468-2 offers significant advantages over single-beam methods. It measures sample and reference simultaneously, minimizing errors from light source fluctuations.

Advantages:

  • Higher precision for transparent materials
  • Better compensation for instrument drift
  • More accurate for slightly tinted materials
  • Reduced influence of environmental factors

Limitations:

  • Cannot be used for fluorescent materials
  • Specimens thicker than 10mm may produce results that aren’t comparable with standard samples
  • More complex equipment than single-beam methods
  • Potentially higher cost of implementation

You should consider these factors when determining if this standard meets your testing requirements.

Selecting the Appropriate Standard

Your choice between ISO 13468-2 and alternatives should depend on your specific testing needs and available equipment.

Choose ISO 13468-2 when:

  • You need high precision measurements
  • Testing transparent or slightly tinted plastics
  • You have access to a double-beam spectrophotometer
  • Sample thickness is within recommended range (typically ≤10mm)

Select ISO 13468-1 (single-beam alternative) when:

  • Lower precision is acceptable
  • Equipment budget is limited
  • Simplicity of operation is preferred

For materials with significant haze or diffusion properties, ASTM D1003 may be more appropriate as it specifically addresses these characteristics.

Remember that test results between different standards aren’t directly comparable, so consistency in method selection is important for benchmarking purposes.

Frequently Asked Questions

The ISO 13468-2 standard provides crucial guidelines for measuring total luminous transmittance in plastic materials using a dual-beam method. This testing protocol helps manufacturers ensure product quality and performance in various applications.

What is the purpose of the ISO 13468-2 standard in evaluating the total luminous transmittance of plastics?

ISO 13468-2 specifically measures how much light passes through plastic materials using a dual-beam method. This approach allows for precise quantification of a plastic sample’s ability to transmit light.

The standard helps manufacturers determine optical clarity and transparency, which are critical properties for many plastic applications. Products like display screens, window materials, and optical lenses rely on this data to meet performance specifications.

The dual-beam approach provides more accurate results by comparing the sample measurement to a reference beam simultaneously, eliminating many variables that could affect single-beam measurements.

How does the ISO 13468-2 test contribute to quality assurance in industries that utilize plastics?

This test method establishes a consistent way to verify optical properties across production batches. By regularly testing samples, manufacturers can quickly identify deviations in transparency that might indicate process problems.

The quantitative data from ISO 13468-2 testing creates objective pass/fail criteria for product acceptance. This eliminates subjective visual assessments and provides legal documentation of compliance with specifications.

For industries like automotive, electronics, and medical devices, the test confirms materials meet strict transparency requirements for safety and functionality.

Can you elaborate on the types of materials that are typically subject to ISO 13468-2 testing?

Clear or translucent thermoplastics like polycarbonate, acrylic, and PETG are commonly tested with this method. These materials are frequently used in applications where light transmission is essential.

Film products, including packaging materials and protective coverings, undergo ISO 13468-2 testing to ensure consistent optical properties. The test works well for thin materials that require precise optical characterization.

Specialty plastics used in optical components, lighting fixtures, and display technologies also rely on this testing standard. Any plastic where light transmission affects performance can benefit from this evaluation.

Why is the ISO 13468-2 standard considered a critical component in the production and assessment of transparent or translucent plastics?

The standard provides a globally recognized method that ensures consistency across manufacturers and countries. This facilitates international trade and collaboration in plastic production.

ISO 13468-2 testing detects subtle variations in light transmission that might be missed by visual inspection. These variations can significantly impact product performance in critical applications.

The test results help engineers predict how materials will perform in real-world lighting conditions. This predictive capability is essential for designing products with specific optical requirements.

What are the core principles that the ISO 13468-2 test is based on, and why are these principles important?

The dual-beam principle compares light passing through the sample to a reference beam simultaneously. This approach compensates for fluctuations in light source intensity and environmental conditions.

Spectral measurement across visible wavelengths (approximately 380-780nm) ensures comprehensive evaluation of transparency. This range matches human visual perception, making results relevant for applications where visual clarity matters.

The test uses precisely calibrated equipment to ensure reproducibility and accuracy. Standardized testing conditions allow for meaningful comparisons between different materials or production batches.

How do the results of the ISO 13468-2 test impact the development and application of plastic materials in various industries?

Test results guide material selection decisions for specific applications based on quantifiable optical properties. Designers can choose materials with confidence knowing exactly how they will perform optically.

Product development teams use transmittance data to refine formulations and processing methods. Small adjustments to additives or processing temperatures can significantly impact transparency.

Compliance with customer specifications often depends on meeting specific transmittance values. ISO 13468-2 test reports provide documentation for quality certification and customer acceptance.

Sobre QUALTECH PRODUCTS INDUSTRY Science & Research

O que você pode ler a seguir

ASTM B964-16 Standard Test Methods for Flow Rate of Metal Powders Using the Carney Funnel: Essential Quality Control for Powder Metallurgy Applications
AS 1580.408.4: Tintas e materiais relacionados — Métodos de ensaio — Adesão (corte transversal): Compreendendo sua finalidade e aplicações industriais na avaliação da qualidade
MPIF Standard 04: Apparent Density Using a Flowmeter Funnel – Essential Properties Assessment for Metal Powders in PM Industry

FAÇA UM ORÇAMENTO GRATUITO

Fale Conosco - Gostaríamos de ouvir você

Obtenha informações agora sobre produtos, suporte técnico, atendimento ao cliente, vendas, relações públicas, serviços profissionais e parceiros. Você também pode fornecer feedback em nosso site.
Por favor, preencha este formulário. Um de nossos especialistas responderá à sua pergunta em breve. Em alternativa, contacte-nos através dos dados da empresa nos EUA, na Austrália ou no Reino Unido.

    Observe que respeitamos sua privacidade e mantemos seus dados estritamente confidenciais.

    ASTM
    ANSI
    bsi
    IEC
    AATCC
    TÜV
    ISO
    DIN

    © 1978 - 2025 INDÚSTRIA DE PRODUTOS QUALTECH Termos de uso termos e Condições Biscoitos Contate-nos

    PRINCIPAL
    Este site utiliza cookies para melhorar a sua experiência, no entanto, respeitamos a sua privacidade e os cookies apenas recolhem dados anónimos. Respeitamos sua privacidade e você pode cancelar, se desejar.
    Configurações de cookiesAceitar tudo
    Gerenciar consentimento

    Visão geral da privacidade

    Este site utiliza cookies para melhorar sua experiência enquanto você navega pelo site. Destes, os cookies categorizados como necessários são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. Também utilizamos cookies de terceiros que nos ajudam a analisar e compreender como você utiliza este site. Estes cookies serão armazenados no seu navegador apenas com o seu consentimento. Você também tem a opção de desativar esses cookies. Mas a desativação de alguns desses cookies pode afetar sua experiência de navegação.
    Necessário
    Sempre ativado
    Os cookies necessários são absolutamente essenciais para o bom funcionamento do site. Estes cookies garantem funcionalidades básicas e recursos de segurança do site, de forma anônima.
    BiscoitoDuraçãoDescrição
    cookielawinfo-checkbox-analítica11 mesesEste cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do usuário para os cookies na categoria "Analytics".
    cookielawinfo-checkbox-funcional11 mesesO cookie é definido pelo consentimento de cookies do GDPR para registrar o consentimento do usuário para os cookies na categoria "Funcional".
    cookielawinfo-checkbox-necessário11 mesesEste cookie é definido pelo plugin GDPR Cookie Consent. Os cookies são utilizados para armazenar o consentimento do usuário para os cookies na categoria "Necessários".
    cookielawinfo-checkbox-outros11 mesesEste cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do usuário para os cookies na categoria "Outros".
    cookielawinfo-checkbox-desempenho11 mesesEste cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do usuário para os cookies na categoria “Desempenho”.
    view_cookie_policy11 mesesO cookie é definido pelo plug-in GDPR Cookie Consent e é usado para armazenar se o usuário consentiu ou não com o uso de cookies. Não armazena nenhum dado pessoal.
    Funcional
    Os cookies funcionais ajudam a executar determinadas funcionalidades, como compartilhar o conteúdo do site em plataformas de mídia social, coletar feedbacks e outros recursos de terceiros.
    Desempenho
    Os cookies de desempenho são usados para compreender e analisar os principais índices de desempenho do site, o que ajuda a oferecer uma melhor experiência de usuário aos visitantes.
    Análise
    Os cookies analíticos são utilizados para compreender como os visitantes interagem com o site. Esses cookies ajudam a fornecer informações sobre métricas como número de visitantes, taxa de rejeição, origem do tráfego, etc.
    Anúncio
    Os cookies de publicidade são usados para fornecer aos visitantes anúncios e campanhas de marketing relevantes. Esses cookies rastreiam os visitantes dos sites e coletam informações para fornecer anúncios personalizados.
    Outros
    Outros cookies não categorizados são aqueles que estão sendo analisados e ainda não foram classificados em uma categoria.
    SALVAR E ACEITAR
    pt_PTPortuguês
    en_USEnglish da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português