INDUSTRIE DES PRODUITS QUALTECH

INDUSTRIE DES PRODUITS QUALTECH

De vraies valeurs pour nos clients & clients

États-Unis : +1 720 897 7818
Royaume-Uni : +44 161 408 5668
UA : +61 2 8091 0618

E-mail: [email protected]

INDUSTRIE DES PRODUITS QUALTECH
2186 South Holly Street, Denver, Colorado 80222, États-Unis

Ouvrir dans Google Maps
  • Accueillir
  • Instruments
    • Mesure de viscosité
      • Gobelets Flow
        • Coupe d'écoulement ISO ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Coupes Ford ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Coupe Zahn ASTM D1084 ASTM D4212 BS EN 535
        • Coupe japonaise IWATA
        • Coupelle DIN DIN 53211
        • Tasse à pression ISO 2811-4 BS 3900-A22
        • Supports et supports pour coupes à débit de viscosité
      • Viscosimètre rotatif
        • Viscosimètre portatif
        • Viscosimètre portatif
        • Viscosimètre rotatif numérique
        • Viscosimètre à broche avec écran tactile
        • Viscosimètre Krebs Stormer
        • Viscosimètre haute température
        • Viscosimètre à cône et plaque
        • Bain de viscosité
        • Viscosimètre Laray
        • Viscosimètre Farine & Amidon
    • Test d'apparence
      • Brillant
        • Brillancemètre
        • Brillancemètre avec micro-lentille
        • Brillancemètre Haze
        • Brillancemètre Angle 45°
        • Brillancemètre Angle 75°
        • Glossmètre de poche
        • Brillancemètre avec écran tactile
        • Lecteur de couleur et compteur de brillance
        • Brillancemètre en ligne
        • Mini Brillancemètre
      • Transparence Brume Clarté
        • Compteur de brume
        • Turbidimètre portatif
        • Turbidimètre de bureau
      • Couleur
        • Lecteur couleur portable
        • Lecteur couleur portable
        • Lecteur couleur de paillasse
        • Spectrophotomètre portatif
        • Spectrophotomètre de bureau
        • Cabinet d'évaluation des couleurs
        • Station d'épreuvage couleur
        • Comparateur de couleurs Gardner
        • Teintemètre Lovibond
        • Cartes de couleurs RAL
        • Cartes de couleurs Pantone
        • Lecteur couleur portable pour liquides
        • Colorimètre portable pour poudres
        • Colorimètre portable pour produits pharmaceutiques
        • Logiciel de correspondance des couleurs
      • Blancheur
        • Compteur de blancheur portable
        • Compteur de blancheur portable
        • Mètre de blancheur de bureau d'OIN
        • Compteur de blancheur CIE D65
        • Appareil de mesure de la porosité
      • Épaisseur
        • Jauges d'épaisseur de film humide
        • Jauge d'épaisseur de film humide de roue
        • Jauge d'épaisseur de revêtement
        • Jauge d'épaisseur à ultrasons
        • Jauge d'inspection de la peinture
        • Jauge d'épaisseur de banane
        • Étrier
        • Mètre d'épaisseur de feuille
      • Opacité de réflexion
        • Compteur de réflectance
        • Réflectomètre spectral portatif
        • Réflectomètre de bureau
        • Cryptomètre numérique
        • Compteur de réflectance infrarouge
        • Compteur de transmission lumineuse
        • Compteur de transmission de lumière pour verre et lentille
        • Transmetteur de lumière 365nm & 550nm & 850nm & 940nm
        • Compteur de transmission de la lumière UV
        • Compteur de transmission de la lumière infrarouge
        • Compteur de transmission de la lumière bleue
        • Rétroréflectomètre à angle unique
        • Rétroréflectomètre multi-angle
    • Série d'applications
      • Coucheuse par trempage
      • Applicateur automatique de film sous vide
      • Applicateur de film automatique avec table d'application de film en acier inoxydable et en verre
      • Testeur de mise à niveau
      • Testeur SAG
      • Applicateurs de film
      • Enduiseur de barre de fil
      • Pistolet à peinture
      • Spin Coater
      • Table à vide pour application de film
      • Surface de rabattement
      • Graphiques en damier
      • Couche d'immersion d'azote
      • Couche d'immersion multicouche
      • Coucheuse à température constante
      • Casterguide pour applicateur de film cube
      • Chambre de pulvérisation de substrat automatique
      • Cabine de pulvérisation de lavage à l'eau
    • Mesure de l'humidité
      • Titreur Karl Fischer
      • Titreur coulométrique Karl Fischer
      • Humidimètre numérique
      • Analyseur d'humidité
      • Évaporateur rotatif
    • Test des propriétés physiques
      • Finesse de mouture
        • Jauges de finesse de mouture
        • Finesse électrique des jauges de mouture
      • Temps de séchage
        • Enregistreur de temps de séchage
        • Enregistreur de temps de séchage automatique
        • Testeur d'état à sec
      • Densité
        • Tasses de densité
        • Pycnomètre à gaz
        • Densimètre portatif
        • Densimètre de paillasse
        • Densitomètre portatif
        • Densitomètre à transmission
        • Densitomètre à transmission optique
        • Densimètre de flottabilité
        • Scott volumètre
        • Débitmètre Hall
        • Débitmètre Carney
        • Densimètre apparent ASTM D1895 Méthode A
        • Densimètre apparent ASTM D1895 Méthode B
        • Densimètre apparente ISO R60
        • Mètre de densité en vrac
        • Volumemètre de densité apparente
        • Tapez Densimètre
        • Angle de repos de la poudre
        • Testeur de caractéristiques de poudre
        • Système d'analyse automatique de la propreté du filtre
        • Pycnomètre Automatique à Densité Réelle
        • Débitmètre Gustavsson
        • Densimètre Arnold
        • Densimètre apparente Méthode ISO R60
        • Densimètre apparent ASTM D1895 Méthode A
        • Densimètre apparent ASTM D1895 Méthode B
        • Densimètre en vrac ASTM D1895 Méthode C
        • Densimètre automatique pour liquides
        • Densimètre pour liquides
        • Cabinet de confort acoustique
      • Conductivité et pH
        • pH-mètre de poche
        • pH-mètre portatif
        • pH-mètre portatif
        • pH-mètre de bureau
        • Conductimètre portatif
        • Conductimètre portable
        • Conductimètre et pH-mètre de bureau
        • Électrode pH
        • Électrode sélective d'ions
        • Électrode à oxygène dissous
        • Électrode de référence
        • Électrode de conductivité
        • Métal Électrode
        • Électrode de température
      • Réfraction
        • Réfractomètre portatif
        • Réfractomètre numérique portable
        • Réfractomètre numérique automatique
        • Réfractomètre numérique
        • Réfractomètre analogique
      • Rugosité
        • Mesureur de rugosité de surface
      • Température et humidité
        • Barre MFFT avec écran tactile
        • Humidimètre
        • Thermomètre de laboratoire
        • Thermomètre infrarouge
        • Testeur de point d'éclair en coupe fermée
        • Testeur de point d'éclair en tasse fermée à basse température
        • Testeur automatique de point d'éclair en coupe fermée
        • Testeur de point d'éclair Abel
        • Testeur de point d'éclair à coupe ouverte
        • Testeur de point d'éclair à coupelle ouverte basse température
        • Testeur de point de ramollissement
        • Appareil de point de fusion
        • Testeur de point de fusion avec enregistrement vidéo
        • Testeur de point de fusion
        • Testeur de point de fusion au microscope
        • Analyseur optique thermique
        • Testeur de déviation thermique
      • Mesure de tension
        • Tensiomètre superficiel Du Noüy Ring
        • Tensiomètre superficiel à plaque de Wilhelmy
      • Mesure de la taille des particules
        • Analyseur de taille de particules
        • Tamiseuse de laboratoire
    • Essais de propriétés mécaniques
      • Instruments de test de flexibilité et de déformation
        • Testeur de pliage en T
        • Testeur de courbure de mandrin cylindrique
        • Testeur de courbure à mandrin conique
        • Testeur de ventouses
        • Testeur de frappe à billes
        • Testeur de compression
        • Testeur d'écrasement des bords
        • Testeur de résistance à l'éclatement du papier
        • Testeur de résistance à l'éclatement du carton
        • Testeur de résistance à l'éclatement des textiles
        • Testeur de compression de boîte
        • Testeur d'écrasement de rouleau
        • Testeur de flexibilité de film de peinture
        • Exemples de substrats pour testeur de flexibilité Putty
        • Testeur automatique de couple de bouchons de bouteilles
      • Instruments d'essai d'impact
        • Testeur d'impact DuPont
        • Testeur d'impact à usage intensif
        • Testeur d'impact universel
        • Testeur d'impact de fléchettes tombantes
        • Testeur d'impact de panneaux de bois
      • Instruments de test d'adhérence
        • Testeur de coupe transversale d'adhérence
        • Testeur de coupe croisée d'adhérence à lame unique
        • Kit de test de règle de coupe transversale d'adhérence
        • Kit de test Adhérence X Cut
        • Testeur automatique de coupe transversale d'adhérence de peinture
        • Testeur d'adhérence entièrement automatique
        • Testeur d'adhérence automatique
        • Testeur d'adhérence au pelage
        • Testeur de coefficient de frottement COF
        • Testeur de pelage pour adhésifs
        • Testeur de boucle
        • Testeur de pelage d'adhérence
      • Instruments de test de dureté
        • Testeur de dureté de crayon
        • Testeur de dureté de crayon de bureau
        • Testeur de dureté de crayon motorisé
        • Stylo de dureté Dur-O-Test
        • Appareil de contrôle de dureté de pendule
        • Testeur de rayures automatique
        • Testeur de Mar automatique
        • Outil de grattage
        • Testeur de dureté de rebond Leeb
        • Testeur de dureté Leeb portable
        • Testeur de dureté portatif
        • Testeur de dureté de poche numérique
        • Testeur de dureté portable Rockwell & Brinell
        • Testeur de dureté Rockwell portable
        • Testeur de dureté Brinell à petite charge
        • Testeur de dureté Brinell avec écran tactile
        • Testeur de dureté Brinell
        • Testeur de dureté multiple
        • Testeur de dureté Rockwell avec écran tactile
        • Testeur de dureté Rockwell
        • Testeur de dureté superficielle Rockwell
        • Testeur de dureté Rockwell pour grand échantillon
        • Testeur de dureté plastique Rockwell
        • Testeur de dureté Vickers
        • Testeur de dureté Vickers à petite charge
        • Testeur de dureté Knoop
        • Testeur de micro-dureté avec écran tactile
        • Testeur de micro-dureté
        • Testeur d'indentation Buchholz
      • Instruments d'essai d'abrasion
        • Testeur d'abrasion humide
        • Testeur de récurage avancé à l'abrasion humide
        • Testeur d'abrasion rotatif à plate-forme unique
        • Testeur d'abrasion rotatif à double plate-forme
        • Testeur d'abrasion linéaire
        • Crockmètre manuel
        • Crockmètre électrique
        • Crockmètre rotatif électrique
        • Crockmètre rotatif
        • Crockmètre circulaire en cuir
        • Crockmètre Gakushin
        • Testeur d'abrasion et de boulochage Martindale
        • Testeur de cylindre oscillant Wyzenbeek
        • Testeur d'abrasion RCA
        • Testeur d'abrasion par chute de sable
        • Échelle de transfert chromatique en 9 étapes AATCC
        • Cartes de test de couleur à échelle de gris AATCC
        • Testeur d'abrasion avancé
      • Systèmes d'essai de traction
        • Machine de traction à colonne unique
        • Machine de traction à double colonne
      • Systèmes de test de fragilité
        • Système de test de fragilité
        • Testeur de fragilité
      • Test de lavage de la solidité des couleurs
        • Testeur de solidité des couleurs au lavage
    • Instruments d'essais climatiques
      • Équipement de test de vieillissement
        • Chambre d'essai de vieillissement UV de bureau
        • Chambre d'essai de vieillissement à la lumière UV
        • Chambre d'essai de vieillissement au xénon
        • Chambre d'essai au xénon avec système de filtre à eau
        • Chambre d'essai de vieillissement à l'arc au xénon
      • Contrôle de la corrosion
        • Chambre de brouillard salin
        • Chambre d'essai de brouillard salin
        • Chambre d'essai avancée au brouillard salin
      • Température et humidité
        • Four de laboratoire
        • Four de laboratoire antidéflagrant
        • Four à moufle
        • Four à vide de laboratoire
        • Chambre à lumière verticale
        • Bain à basse température
        • Bain-marie de laboratoire
        • Bain d'huile de laboratoire
        • Chambre d'essai climatique
        • Incubateur de bain à sec
      • Durcissement UV
        • Équipement de séchage UV
        • Radiomètre UV
    • Mélange Dispersion Broyage
      • Mélangeur de laboratoire électrique
      • Agitateur de laboratoire électrique
      • Mélangeur de laboratoire automatique avec minuterie
      • Disperseur à grande vitesse de laboratoire
      • Disperseur polyvalent de laboratoire
      • Disperseur de laboratoire avec minuterie
      • Disperseur automatique de laboratoire avec minuterie et mesure de la température
      • Disperseur et mélangeur à cisaillement élevé de laboratoire antidéflagrant
      • Moulin à paniers de laboratoire
      • Agitateur de pots de peinture à deux bras
      • Agitateur de peinture automatique
      • Agitateur de peinture pneumatique
      • Distributeur de peinture
      • Distributeur automatique de peinture
      • Agitateur orbital automatique
      • Agitateur de plaques de laboratoire
      • Grand agitateur orbital
      • Disperseur sous vide de laboratoire
      • Disperseur sous vide avancé
      • Moulin à poudre automatique
      • Moulin à poudre de bureau
      • Moulin à trois rouleaux
      • Broyeur Müller
      • Moulin à sable horizontal de laboratoire
      • Mélangeur pneumatique de laboratoire
      • Mélangeur pneumatique avec ascenseur
      • Nano-mélangeur
      • Disperseur à grande vitesse sous vide de laboratoire
      • Émulsifiant de laboratoire
      • Mélangeur de laboratoire V
    • Test des propriétés de l'encre d'impression
      • Testeur d'abrasion par frottement au solvant MEK
      • Testeur avancé d'abrasion par solvant MEK
      • Presse à épreuves d'encre
      • Épreuve d'encre d'impression
    • Instruments de test de laboratoire
      • Balances de laboratoire
      • Balances de laboratoire avec écran tactile couleur
      • Testeur Schopper Riegler
      • Testeur hydraulique Schopper Riegler
      • Testeur numérique Schopper Riegler
      • Testeur d'égouttage standard canadien
      • Testeur de point de goutte
      • Testeur de point de goutte ASTM D2265
      • Testeur automatique de point de goutte ASTM D2265
      • Balances de table
      • Balances à plate-forme
      • Testeur de perméabilité aux gaz
      • Testeur de perméabilité à la vapeur d'eau
    • Préparation scientifique des échantillons
      • Préparation d'échantillons de textiles scientifiques
        • Coupeur d'échantillons GSM
    • Instruments d'essai de textiles
      • Testeur d'abrasion MIE
      • Testeur d'abrasion universel
    • Instruments de test environnemental
      • Compteur de qualité de l'air portable
      • Échantillonneur d'air ambiant
    • Instruments de test en plastique
      • Testeur de chocs Charpy Izod
      • Testeur de chocs Charpy
      • Testeur d'impact Izod
      • Testeur d'indice de fluidité de fusion
    • Instruments de test papier
      • Testeur Schopper Riegler
      • Testeur hydraulique Schopper Riegler
      • Testeur numérique Schopper Riegler
      • Testeur d'égouttage standard canadien
      • Pied à coulisse ISO 534
      • Compteur automatique d'épaisseur de papier ISO 534
      • Testeur de résistance à l'éclatement du papier
      • Testeur de résistance à l'éclatement du carton
    • Instruments d'essai de béton
      • Marteau à rebond pour béton
      • Marteau à rebond pour béton numérique
  • Équipement
    • Disperseurs de production industrielle
      • Disperseur industriel
      • Disperseur industriel à double arbre
      • Disperseur industriel multi-arbres
      • Disperseur sous vide industriel
      • Disperseur à haute viscosité
      • Disperseur dans le réservoir
      • Disperseur sous pression dans le réservoir
      • Disperseur sous vide dans le réservoir
      • Lames de dispersion
    • Mélangeurs et agitateurs de production industrielle
      • Mélangeur dans le réservoir
    • Mélangeurs de production industrielle
      • Mélangeur en V
      • Mélangeur à double cône
    • Moulins et broyeurs de production industrielle
      • Moulin à panier industriel
      • Moulin à trois rouleaux
  • Produits chimiques
  • Nous contacter
  • À propos de nous
LIBREDEVIS
  • Maison
  • Science et recherche
  • CIE 15.2 CIE Defines Photometric Quantities: Essential Guidance for Accurate Haze and Transmission Testing

CIE 15.2 CIE Defines Photometric Quantities: Essential Guidance for Accurate Haze and Transmission Testing

CIE 15.2 CIE Defines Photometric Quantities: Essential Guidance for Accurate Haze and Transmission Testing

par INDUSTRIE DES PRODUITS QUALTECH Science et recherche / Dimanche, 22 juin 2025 / Publié dans Science et recherche

Have you ever wondered how we measure light and its interaction with materials? CIE 15.2, developed by the International Commission on Illumination (CIE), is a fundamental standard that defines photometric quantities using the V(λ) weighting function. This standard is essential for accurately measuring how materials transmit or scatter light, providing the foundation for haze and transmission tests used across multiple industries.

A laboratory scene showing light beams passing through a hazy medium with optical instruments measuring light transmission and scattering.

When you look through a foggy window or examine the clarity of packaging materials, you’re observing properties that can be precisely measured using principles from CIE 15.2. The standard defines how human visual perception relates to physical measurements of light, establishing the mathematical framework for quantifying transparency, translucency, and haziness. These measurements help manufacturers ensure product quality and consistency in industries ranging from automotive and architecture to packaging and optical materials.

Points clés à retenir

  • CIE 15.2 establishes the V(λ) weighting function that matches light measurements to human visual perception.
  • The standard provides the foundation for haze and transmission tests used to evaluate material clarity and light-scattering properties.
  • Proper application of CIE 15.2 principles ensures consistent quality control for transparent and translucent materials across industries.

Purpose and Scope of CIE 15.2

A scientific setup showing a light beam passing through a hazy material with graphical overlays representing photometric measurements and light transmission.

CIE 15.2 is a foundational document published by the International Commission on Illumination that defines standard methods for colorimetry. This technical report establishes the framework for measuring and quantifying color in a scientifically consistent way.

The primary purpose of CIE 15.2 is to provide standardized procedures for color measurement that ensure results are comparable across different laboratories and equipment. It defines important photometric quantities using the V(λ) weighting function, which models the human eye’s sensitivity to different wavelengths of light.

In testing applications, CIE 15.2 is particularly valuable for haze and transmission measurements. These tests help you determine how much light passes through materials and how it scatters.

Key components of CIE 15.2 include:

  • Definitions of standard illuminants (light sources)
  • Standard colorimetric observers (1931 and 1964)
  • Calculation methods for tristimulus values
  • Chromaticity coordinates for various illuminants

When you need to evaluate transparent or translucent materials, CIE 15.2 provides the mathematical foundation for meaningful measurements. This applies to plastics, glass, films, and coatings.

The document serves as a reference for many ASTM test methods that require standardized color and light transmission evaluations. By following these standards, you can achieve reliable and reproducible test results when measuring optical properties.

Photometric Quantities Defined by CIE 15.2

A laboratory scene showing optical instruments and a colorful curve representing light sensitivity across visible wavelengths, with a light beam passing through a semi-transparent medium illustrating haze and transmission effects.

The CIE 15.2 standard establishes key photometric quantities used in optical measurements including haze and transmission tests. These definitions standardize how light is measured in relation to human visual perception.

V(λ) Weighting and Human Visual Response

V(λ) weighting represents how the human eye responds to different wavelengths of light. This function peaks at 555 nm (green-yellow light) where our eyes are most sensitive. At this peak wavelength, 1 watt of radiant power equals 683 lumens of luminous flux.

The human eye’s sensitivity drops significantly toward both blue and red ends of the spectrum. This natural response curve must be accounted for in optical measurements.

When you perform haze or transmission tests, the V(λ) function helps convert radiometric quantities (physical light measurements) into photometric quantities (how humans perceive light). This ensures test results correlate with visual perception.

Without V(λ) weighting, measurements would fail to represent how materials appear to human observers.

Key Photometric Parameters

Luminous flux (measured in lumens) represents the total light output weighted by the V(λ) function. This differs from radiant flux, which measures total energy without considering visual response.

Illuminance (measured in lux) indicates how much light falls on a surface. This parameter is crucial in transmission testing to ensure consistent test conditions.

Luminance (measured in candelas per square meter) measures the brightness of a surface as perceived by human observers. This is particularly important in haze evaluation.

Transmittance represents the ratio of transmitted to incident light, weighted by V(λ). When measuring material clarity, this provides results that match human visual assessment.

You should use these photometric quantities when evaluating material appearance properties like clarity, haze, and light transmission.

Specific Use in Haze and Transmission Tests

A laboratory setup showing light passing through a transparent glass panel with visual effects illustrating light scattering and transmission.

The CIE 15.2 standard provides essential photometric definitions that form the foundation for accurate optical measurements in materials testing. These definitions are particularly relevant when evaluating the transparency and light-scattering properties of materials.

Application in ASTM Haze Methods

ASTM haze test methods like D1003 rely on CIE 15.2’s standardized photometric quantities to ensure consistent measurements. When you perform these tests, you’re measuring the percentage of transmitted light that deviates from the incident beam by more than 2.5 degrees.

The V(λ) weighting function defined in CIE 15.2 adjusts light measurements to match human visual perception. This means test results reflect how the human eye would perceive haziness, not just raw physical measurements.

Common materials tested include plastics, films, glass, and transparent packaging. The test helps you determine:

  • Total transmittance: Overall light passing through
  • Diffuse transmittance: Scattered light
  • Clarté: Direct light transmission

Equipment calibration for these tests must reference CIE standard illuminants (typically D65) as specified in the CIE document.

Why CIE 15.2 Is Critical to Test Accuracy

Without CIE 15.2’s photometric definitions, haze and transmission measurements would vary significantly between laboratories and instruments. The standard ensures you get comparable results regardless of testing location or equipment manufacturer.

The V(λ) function specifically addresses the varying sensitivity of human vision across different wavelengths. This weighting is crucial because it transforms physical light measurements into perceptually relevant values.

Key benefits of applying CIE 15.2 include:

  • Standardized illuminants that represent real-world lighting conditions
  • Consistent calculation methods for color values
  • Clear definitions for luminance and illuminance

When interpreting test results, you can be confident they correlate with actual visual perception of material quality. This makes the data more relevant for product development and quality control.

General Principles Behind the Standard

A laboratory scene showing light passing through a transparent medium with instruments measuring light transmission and scattering.

La CIE 15 standard establishes fundamental principles for colorimetry that enable accurate measurement and communication of color information across different instruments and laboratories.

Standardization of Light Measurement

CIE 15.2 defines how photometric quantities should be measured using the V(λ) weighting function. This function models the human eye’s sensitivity to different wavelengths of light, peaking at 555 nm (yellow-green region).

For haze and transmission tests, this standardization is crucial because it ensures measurements reflect what humans actually see rather than just physical light quantities.

The standard defines specific illuminants (like Standard Illuminant D65 to represent average daylight) to ensure consistency in testing conditions.

Two standard observers are defined: the CIE 1931 Standard Observer (2° field of view) and the CIE 1964 Supplementary Standard Observer (10° field of view). These are used depending on the viewing angle required for specific applications.

Ensuring Reproducibility and Comparability

The standard specifies exact mathematical formulas and procedures for calculating tristimulus values, chromaticity coordinates, and color differences. This mathematical foundation makes measurements objective and repeatable.

Test geometries are standardized to control how light interacts with materials. This includes specific angles for illumination and viewing during transmission and haze testing.

Calibration procedures ensure different instruments produce comparable results. Without these standards, measurements from different laboratories would be impossible to compare meaningfully.

The standard includes recommendations for illuminating and viewing conditions to minimize variables that could affect test results.

By following CIE 15.2 guidelines, manufacturers can verify product quality across different facilities and ensure compliance with specifications regardless of where testing occurs.

Industries and Materials Relevant to CIE 15.2

A laboratory scene showing scientific instruments measuring light transmission through transparent material samples with a light beam passing through them.

CIE 15.2 defines photometric quantities that are critical for haze and transmission testing across multiple industries. These standards provide consistent methodology for measuring how light interacts with various transparent and translucent materials.

Plastics and Transparent Films

Polymer manufacturers rely on CIE 15.2 standards to evaluate the optical properties of plastic films and sheets. You’ll find these measurements particularly important for packaging materials where clarity impacts consumer perception of contained products.

Clear polycarbonate, polyethylene, and PET films require precise haze measurements to ensure quality control. Medical packaging demands exceptionally transparent materials with quantifiable optical properties.

Food packaging manufacturers use these standards to ensure their materials provide adequate protection while maintaining product visibility. Haze measurements help you determine if a plastic film will appear clear or cloudy to consumers.

Agricultural films also benefit from these measurements, as light transmission directly impacts crop growth in greenhouse applications.

Glass and Architectural Applications

Building and construction industries apply CIE 15.2 standards when evaluating glazing materials. You need accurate light transmission data to determine energy efficiency and visibility characteristics of windows.

Architects specify glass based on these measurements to achieve desired aesthetics and functional performance. Low-E glass requires precise photometric evaluation to balance visible light transmission with thermal insulation properties.

Safety glass manufacturers use these standards to ensure consistent optical quality after lamination or tempering processes. Museum display cases need specialized glass with quantifiable UV filtering properties.

Building energy codes often reference CIE-based measurements to establish minimum performance requirements for daylighting and energy efficiency in commercial structures.

Automotive and Display Industries

Vehicle manufacturers apply CIE 15.2 standards to windshields, windows, and displays. You must ensure driver visibility meets safety requirements through standardized photometric measurements.

Head-up displays (HUDs) depend on precise optical characteristics to project information clearly onto windshields. Automotive interior displays use these standards to maintain readability in various lighting conditions.

Electronic device manufacturers rely on these measurements for screens and protective covers. Mobile phones, tablets, and monitors need consistent optical performance across production batches.

Aircraft manufacturers apply these standards to cockpit windows and displays where clarity directly impacts safety. Medical imaging displays require exceptional optical properties with minimal haze to ensure diagnostic accuracy.

Interpreting Results and Implications

A laboratory scene showing optical equipment measuring light transmission through transparent materials with graphical data plots in the background.

Understanding CIE 15.2 test results requires careful analysis of photometric data. The interpretation directly affects product acceptance and human perception considerations.

Impact on Product Quality and Compliance

Test results from CIE 15.2 serve as critical quality indicators for transparent and translucent materials. When V(λ) weighting is applied to transmission measurements, you can determine if products meet industry specifications for light transmission and haze.

Materials with high haze values may indicate poor manufacturing processes or degradation over time. For automotive glass, results below compliance thresholds can lead to rejection during quality control.

You should compare your test data against historical benchmarks to identify trends or anomalies. Many industries have specific pass/fail criteria:

Industry Typical Transmission Requirement Maximum Haze Allowed
Automotive >70% <2%
Optical displays >90% <0.5%
Architectural >65% <3%

Documentation of results should include both raw data and calculated values to ensure traceability.

Implications for Visual Perception

The V(λ) weighting function in CIE 15.2 correlates closely with human visual perception, making test results relevant to real-world applications.

Products with poor test results often create visual discomfort for users. High haze values can cause:

  • Reduced visibility through materials
  • Distorted color perception
  • Increased eye strain during prolonged use

You should consider how varying lighting conditions might affect perception beyond the standard test environment. A material that performs well under laboratory conditions might still create visibility issues under direct sunlight.

Age-related changes in human vision further complicate interpretation, as older users may be more sensitive to haze. When designing safety-critical applications, you should apply stricter standards than minimum requirements.

User acceptance testing often complements photometric measurements to validate that technical compliance translates to satisfactory visual performance.

Best Practices for Implementation

A laboratory scene showing light beams passing through a transparent glass panel with optical instruments and scientific graphs in the background.

Implementing CIE 15.2 colorimetry standards correctly requires attention to both equipment specifications and environmental conditions. Proper application ensures accurate and reproducible photometric measurements essential for haze and transmission tests.

Standardized Instrumentation

When selecting instruments for CIE 15.2 photometric measurements, you should use spectrophotometers or colorimeters that comply with CIE recommendations. These instruments must accurately incorporate the V(λ) weighting function, which models human eye sensitivity.

Calibrate your equipment regularly using certified reference standards. This helps maintain measurement accuracy over time.

For haze measurements, ensure your instrument can distinguish between diffuse and specular transmission. Most modern spectrophotometers offer specific modes for this purpose.

Verify that your instrument’s geometry matches CIE recommendations (0°/diffuse or 8°/diffuse). This geometry specification affects how light interacts with your sample.

Document all instrument settings in your test reports, including wavelength range, bandwidth, and measurement mode.

Critical Evaluation of Test Conditions

Room conditions significantly impact photometric measurements. Maintain a controlled environment with temperature at 23°C ± 1°C and relative humidity at 50% ± 5%.

Eliminate stray light in your testing area. Even small amounts of ambient light can distort readings, especially for highly transparent samples.

Handle specimens carefully to prevent fingerprints, scratches, or contamination. Use gloves and sample holders designed for optical testing.

Standardize sample preparation techniques. For films and sheets, ensure consistent thickness and surface quality.

Allow samples to equilibrate to room conditions for at least 24 hours before testing. This minimizes measurement variations due to temperature or humidity effects.

Perform measurements in triplicate at different sample locations to account for material variability and ensure representative results.

Comparison With Similar Photometric Standards

La CIE 15.2 standard provides a foundation for photometric measurements using V(λ) weighting that differs from yet complements other international standards. Several testing organizations have developed their own approaches to measuring light and color properties.

Differences From ASTM and ISO Methods

ASTM methods typically focus on material-specific applications of photometric principles, while CIE 15.2 establishes the fundamental science behind these measurements. For example, ASTM D1003 for haze measurement references CIE’s V(λ) function but adds specific testing geometries and sample preparation guidelines.

ISO standards often adopt CIE fundamentals but expand them for particular industries. ISO 13468 for transmission measurements incorporates CIE’s photometric principles but adds specific procedures for plastic materials.

The key distinction is that CIE 15.2 defines the colorimetric observer functions and illuminant specifications that other standards reference. While ASTM and ISO methods provide detailed test procedures, CIE provides the underlying mathematical framework.

Complementary Use With Additional Standards

CIE 15.2 works best when used alongside application-specific standards. You can combine it with ASTM E308 for computing colorimetric values to create comprehensive testing protocols.

The CIE standard provides the spectral power distributions of standard illuminants (D65, A, etc.) that are referenced in other test methods. When performing transmission or haze tests, you’ll need both the fundamental CIE definitions and the procedural details from ASTM or ISO methods.

Many industries require multiple standards for complete compliance. For example, automotive glazing tests might require CIE 15.2 for the photometric definitions, ASTM D1003 for the haze measurement procedure, and ISO 9050 for solar transmission properties.

This multi-standard approach ensures both scientific validity and practical applicability in your testing protocols.

Frequently Asked Questions

CIE 15.2 provides essential guidance for photometric measurements in haze and transmission tests. These standards help ensure consistent and reliable results across different testing environments and applications.

What are the objectives of ASTM test method related to CIE 15.2 in terms of evaluating photometric quantities?

The primary objective is to establish standardized methods for measuring how materials transmit, scatter, or absorb light. This standardization helps evaluate material clarity, transparency, and optical properties with consistency.

The test method aims to quantify visual perception using V(λ) weighting, which models human eye sensitivity to different wavelengths of light. This allows for measurements that correlate with human visual experience.

Another key objective is to provide repeatable and reproducible results that can be compared across different laboratories and testing facilities worldwide.

Can you describe the general principles that guide the CIE 15.2 standard for haze and transmission tests?

The CIE 15.2 standard is based on the principle that human visual perception varies with wavelength. The V(λ) function represents the standard observer’s sensitivity to light at different wavelengths.

Light transmission measurements are weighted according to this V(λ) function to match human visual perception. This means that wavelengths to which the human eye is more sensitive have greater influence on the final measurement.

The standard defines specific illumination conditions, viewing geometries, and measurement techniques to ensure consistency. These controlled conditions allow for meaningful comparisons between different materials and products.

Why is the CIE 15.2 standard significant to industries, and what applications does it have in material testing?

The standard is crucial for manufacturers of transparent and translucent materials like glass, plastics, and films. It helps ensure products meet visual quality requirements and regulatory specifications.

In the automotive industry, these tests evaluate windshields and windows for clarity and safety. Poor optical properties can cause visual distortions that might affect driver visibility.

For packaging materials, the standard helps measure transparency needed for product display. Food, beverage, and retail packaging often require specific levels of clarity and light transmission.

The construction industry relies on these measurements when selecting glazing materials. Energy efficiency, visual comfort, and aesthetic considerations all depend on accurate photometric testing.

How do the results of the CIE 15.2 photometric test affect decision-making in product development and quality control?

Test results directly influence material selection during product design phases. Engineers can choose materials that provide the optimal balance of clarity, light diffusion, and other optical properties.

Quality control departments use these measurements as pass/fail criteria. Products that don’t meet established photometric specifications can be identified and removed from production.

The data helps manufacturers optimize processing conditions. Temperature, pressure, and other variables in production can be adjusted to achieve desired optical characteristics.

These measurements also support compliance with industry standards and regulations. Many building codes, automotive safety standards, and consumer product regulations specify minimum photometric performance criteria.

What are some best practices to ensure accurate results when implementing the CIE 15.2 photometric test method?

Regular calibration of your photometric equipment is essential. Use certified reference materials with known values to verify your system’s accuracy.

Control the testing environment carefully. Ambient light, temperature fluctuations, and dust can all affect measurement accuracy.

Prepare samples consistently according to the standard specifications. Sample thickness, surface preparation, and handling procedures should remain uniform across tests.

Train operators thoroughly on both the theory and practical aspects of the test. Understanding the principles behind the measurements helps technicians recognize when results might be questionable.

Document all test conditions and procedural details. This information is crucial for troubleshooting unexpected results and ensuring test reproducibility.

In what ways does the CIE 15.2 standard differ from other photometric test methods, and why might one be chosen over another?

CIE 15.2 specifically incorporates the V(λ) weighting function, while some other methods measure absolute light transmission without this human vision adjustment. When correlation with visual perception is important, CIE 15.2 is preferred.

The standard focuses on integrated measurements across the visible spectrum. Other methods might analyze specific wavelengths or spectral regions separately.

CIE 15.2 is internationally recognized, making it ideal for global markets. Regional standards might be preferred when testing products for specific local regulations.

The equipment requirements for CIE 15.2 testing can be more sophisticated than simpler transmission tests. Budget constraints or application needs might lead to choosing alternative methods.

À propos de INDUSTRIE DES PRODUITS QUALTECH Science et recherche

Ce que vous pouvez lire ensuite

ISO 16276-2: Corrosion Protection Assessment Methods for Steel Structures – Understanding Cross-cut and X-cut Testing Applications and Significance
Practice E2387 ASTM Practice for Measuring Haze of High Haze and Translucent Plastics: Applications and Significance in Optical Quality Assessment
Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

OBTENIR UN DEVIS GRATUIT

Contactez-nous - Nous aimerions avoir de vos nouvelles

Obtenez dès maintenant des informations sur les produits, le support technique, le service client, les ventes, les relations publiques, les services professionnels et les partenaires. Vous pouvez également nous faire part de vos commentaires sur notre site Web.
Merci de bien vouloir remplir ce formulaire. Un de nos spécialistes répondra à votre demande sous peu. Vous pouvez également nous contacter via les coordonnées de la société aux États-Unis, en Australie ou au Royaume-Uni.

    Veuillez noter que nous respectons votre vie privée et gardons vos coordonnées strictement confidentielles.

    ASTM
    ANSI
    bsi
    CEI
    AATCC
    TÜV
    ISO
    VACARME

    © 1978 - 2025 INDUSTRIE DES PRODUITS QUALTECH Conditions d'utilisation termes et conditions Biscuits Nous contacter

    HAUT
    Ce site Web utilise des cookies pour améliorer votre expérience, cependant, nous respectons votre vie privée et les cookies ne collectent que des données anonymes. Nous respectons votre vie privée et vous pouvez vous désinscrire, si vous le souhaitez.
    Paramètres des cookiesAccepter tout
    Gérer le consentement

    Aperçu de la confidentialité

    Ce site Web utilise des cookies pour améliorer votre expérience lorsque vous naviguez sur le site Web. Parmi ceux-ci, les cookies classés comme nécessaires sont stockés sur votre navigateur car ils sont essentiels au fonctionnement des fonctionnalités de base du site Web. Nous utilisons également des cookies tiers qui nous aident à analyser et à comprendre comment vous utilisez ce site Web. Ces cookies ne seront stockés dans votre navigateur qu'avec votre consentement. Vous avez également la possibilité de refuser ces cookies. Mais la désactivation de certains de ces cookies peut affecter votre expérience de navigation.
    Nécessaire
    Toujours activé
    Les cookies nécessaires sont absolument essentiels au bon fonctionnement du site Web. Ces cookies assurent les fonctionnalités de base et les éléments de sécurité du site Web, de manière anonyme.
    BiscuitDuréeDescription
    cookielawinfo-checkbox-analytics11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Le cookie est utilisé pour stocker le consentement de l'utilisateur pour les cookies de la catégorie « Analytics ».
    cookielawinfo-checkbox-fonctionnel11 moisLe cookie est défini par le consentement aux cookies du RGPD pour enregistrer le consentement de l'utilisateur pour les cookies de la catégorie « Fonctionnel ».
    cookielawinfo-case à cocher-nécessaire11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Les cookies sont utilisés pour stocker le consentement de l'utilisateur pour les cookies dans la catégorie « Nécessaire ».
    cookielawinfo-checkbox-autres11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Le cookie est utilisé pour stocker le consentement de l'utilisateur pour les cookies de la catégorie "Autre".
    cookielawinfo-checkbox-performance11 moisCe cookie est défini par le plugin GDPR Cookie Consent. Le cookie est utilisé pour stocker le consentement de l'utilisateur pour les cookies de la catégorie « Performance ».
    visualisé_cookie_policy11 moisLe cookie est défini par le plugin GDPR Cookie Consent et est utilisé pour stocker si l'utilisateur a consenti ou non à l'utilisation de cookies. Il ne stocke aucune donnée personnelle.
    Fonctionnel
    Les cookies fonctionnels aident à exécuter certaines fonctionnalités telles que le partage du contenu du site Web sur les plateformes de médias sociaux, la collecte de commentaires et d'autres fonctionnalités tierces.
    Performance
    Les cookies de performance sont utilisés pour comprendre et analyser les principaux indices de performance du site Web, ce qui contribue à offrir une meilleure expérience utilisateur aux visiteurs.
    Analytique
    Les cookies analytiques sont utilisés pour comprendre comment les visiteurs interagissent avec le site Web. Ces cookies aident à fournir des informations sur les mesures telles que le nombre de visiteurs, le taux de rebond, la source du trafic, etc.
    Publicité
    Les cookies publicitaires sont utilisés pour fournir aux visiteurs des publicités et des campagnes marketing pertinentes. Ces cookies suivent les visiteurs sur les sites Web et collectent des informations pour proposer des publicités personnalisées.
    Autres
    Les autres cookies non classés sont ceux qui sont en cours d'analyse et qui n'ont pas encore été classés dans une catégorie.
    ENREGISTRER ET ACCEPTER
    fr_CAFrançais du Canada
    en_USEnglish da_DKDansk de_DEDeutsch elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês fr_CAFrançais du Canada
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português