INDUSTRIA DE PRODUCTOS QUALTECH

INDUSTRIA DE PRODUCTOS QUALTECH

Valores reales para nuestros clientes y clientes

EE. UU.: +1 720 897 7818
Reino Unido: +44 161 408 5668
Australia: +61 2 8091 0618

E-mail: [email protected]

INDUSTRIA DE PRODUCTOS QUALTECH
2186 South Holly Street, Denver, Colorado 80222, EE. UU.

Abrir en Google Maps
  • Bienvenidos
  • Instrumentos
    • Medición de viscosidad
      • Copas de flujo
        • Copa de flujo ISO ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Copas Ford ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Copa Zahn ASTM D1084 ASTM D4212 BS EN 535
        • Copa japonesa IWATA
        • Copa DIN DIN 53211
        • Copa de presión ISO 2811-4 BS 3900-A22
        • Soportes y soportes para copas de flujo de viscosidad
      • Viscosímetro rotacional
        • Viscosímetro de mano
        • Viscosímetro portátil
        • Viscosímetro rotacional digital
        • Viscosímetro de husillo con pantalla táctil
        • Viscosímetro Stormer de Krebs
        • Viscosímetro de alta temperatura
        • Viscosímetro de cono y placa
        • Baño de viscosidad
        • Viscosímetro Laray
        • Viscosímetro de harina y almidón
    • Pruebas de apariencia
      • Brillo
        • Medidor de brillo
        • Medidor de brillo con microlente
        • Brillómetro de neblina
        • Ángulo de 45° del brillómetro
        • Ángulo de 75° del brillómetro
        • Brillómetro de bolsillo
        • Medidor de brillo con pantalla táctil
        • Lector de color y medidor de brillo
        • Brillómetro en línea
        • Minibrillómetro
      • Transparencia Haze Claridad
        • Medidor de neblina
        • Medidor de turbidez portátil
        • Medidor de turbidez de escritorio
      • Color
        • Lector de color de mano
        • Lector de color portátil
        • Lector de color de mesa
        • Espectrofotómetro de mano
        • Espectrofotómetro de escritorio
        • Gabinete de evaluación de color
        • Estación de prueba de color
        • Comparador de colores Gardner
        • Tintómetro Lovibond
        • Cartas de colores RAL
        • Tarjetas de colores Pantone
        • Lector de color portátil para líquidos
        • Colorímetro de mano para polvos
        • Colorímetro portátil para productos farmacéuticos
        • Software de combinación de colores
      • Blancura
        • Medidor de blancura de mano
        • Medidor de blancura portátil
        • Medidor de blancura de escritorio ISO
        • Medidor de blancura CIE D65
        • Dispositivo de medición de porosidad
      • Espesor
        • Medidores de espesor de película húmeda
        • Medidor de espesor de película húmeda de rueda
        • Medidor de espesor de revestimiento
        • Medidor de espesor ultrasónico
        • Medidor de inspección de pintura
        • Medidor de espesor de plátano
        • Calibrar
        • Medidor de espesor de hoja
      • Opacidad de reflexión
        • Medidor de reflectancia
        • Medidor de reflectancia espectral portátil
        • Medidor de reflectancia de escritorio
        • Criptómetro digital
        • Medidor de reflectancia infrarroja
        • Medidor de transmisión de luz
        • Medidor de transmisión de luz de vidrio y lente
        • Medidor de transmitancia de luz 365nm y 550nm y 850nm y 940nm
        • Medidor de transmitancia de luz ultravioleta
        • Medidor de transmitancia de luz IR
        • Medidor de transmitancia de luz azul
        • Retrorreflectómetro de ángulo único
        • Retrorreflectómetro multiángulo
    • Serie de aplicaciones
      • recubridor por inmersión
      • Aplicador automático de película al vacío
      • Aplicador automático de película con mesa de aplicación de película de vidrio y acero inoxidable
      • Probador de nivelación
      • Probador SAG
      • Aplicadores de película
      • Recubridor de barra de alambre
      • Pistola de pintura
      • Recubridor giratorio
      • Mesa de vacío para aplicación de película
      • Superficie de extracción
      • Gráficos de tablero de ajedrez
      • Recubridor por inmersión en nitrógeno
      • Recubridor por inmersión multicapa
      • Recubridor por inmersión a temperatura constante
      • Casterguide para aplicador de película Cube
      • Cámara de pulverización automática de sustrato
      • Cabina de pulverización de lavado con agua
    • Medición de humedad
      • Valorador Karl Fischer
      • Valorador coulométrico Karl Fischer
      • Medidor de humedad digital
      • Analizador de humedad
      • Evaporador giratorio
    • Pruebas de propiedades físicas
      • Finura de molido
        • Medidores de finura de molienda
        • Medidores eléctricos de finura de molienda
      • Tiempo de secado
        • Registrador de tiempo de secado
        • Registrador de tiempo de secado automático
        • Probador de estado completamente seco
      • Densidad
        • Copas de densidad
        • Picnómetro de gases
        • Medidor de densidad de mano
        • Medidor de densidad de sobremesa
        • Densitómetro de mano
        • Densitómetro de transmisión
        • Densitómetro de transmisión óptica
        • Medidor de densidad de flotabilidad
        • Volúmetro Scott
        • Caudalímetro de pasillo
        • Caudalímetro Carney
        • Medidor de densidad aparente ASTM D1895 Método A
        • Medidor de densidad aparente ASTM D1895 Método B
        • Medidor de densidad aparente ISO R60
        • Medidor de densidad a granel
        • Volúmetro de densidad aparente
        • Toque el medidor de densidad
        • Ángulo de reposo de la pólvora
        • Probador de características de polvo
        • Sistema de análisis de limpieza de filtro automático
        • Picnómetro automático de densidad real
        • Caudalímetro Gustavsson
        • Medidor de densidad Arnold
        • Medidor de densidad aparente Método ISO R60
        • Medidor de densidad aparente ASTM D1895 Método A
        • Medidor de densidad aparente ASTM D1895 Método B
        • Medidor de densidad aparente ASTM D1895 Método C
        • Densímetro automático para líquidos
        • Medidor de densidad para líquidos
        • Gabinete Acústico Confort
      • Conductividad y pH
        • Medidor de pH de bolsillo
        • Medidor de pH portátil
        • Medidor de pH portátil
        • Medidor de pH de escritorio
        • Medidor de conductividad de mano
        • Medidor de conductividad portátil
        • Medidor de conductividad y pH de escritorio
        • Electrodo de pH
        • Electrodo selectivo de iones
        • Electrodo de oxígeno disuelto
        • Electrodo de referencia
        • Electrodo de conductividad
        • Electrodo Metálico
        • Electrodo de temperatura
      • Refracción
        • Refractómetro de mano
        • Refractómetro digital portátil
        • Refractómetro digital automático
        • Refractómetro digital
        • Refractómetro analógico
      • Aspereza
        • Medidor de rugosidad superficial
      • Temperatura y humedad
        • Barra MFFT con pantalla táctil
        • Medidor de humedad
        • Termómetro de laboratorio
        • Termómetro infrarojo
        • Probador de punto de inflamación de copa cerrada
        • Probador de punto de inflamación de copa cerrada de baja temperatura
        • Probador automático de punto de inflamación de copa cerrada
        • Probador de punto de inflamación Abel
        • Probador de punto de inflamación de copa abierta
        • Probador de punto de inflamación de copa abierta de baja temperatura
        • Probador de punto de reblandecimiento
        • Aparato de punto de fusión
        • Probador de punto de fusión con grabación de video
        • Probador de punto de fusión
        • Probador de punto de fusión de microscopio
        • Analizador óptico térmico
        • Probador de deflexión de calor
      • Medición de tensión
        • Medidor de tensión superficial Du Noüy Ring
        • Medidor de tensión superficial de placa Wilhelmy
      • Medición del tamaño de partículas
        • Analizador de tamaño de partículas
        • Tamiz de laboratorio
    • Pruebas de propiedades mecánicas
      • Instrumentos de prueba de flexibilidad y deformación
        • Probador de curvatura en T
        • Probador de curvatura de mandril cilíndrico
        • Probador de flexión de mandril cónico
        • Probador de ventosas
        • Probador de golpe de bola
        • Probador de compresión
        • Probador de aplastamiento de bordes
        • Probador de resistencia al estallido de papel
        • Probador de resistencia al estallido de cartón
        • Probador de resistencia al estallido textil
        • Probador de compresión de caja
        • Probador de aplastamiento de rodillos
        • Probador de flexibilidad de película de pintura
        • Sustratos de muestra del probador de flexibilidad de masilla
        • Probador automático de torsión de tapas de botellas
      • Instrumentos de prueba de impacto
        • Probador de impacto DuPont
        • Probador de impacto de servicio pesado
        • Probador de impacto universal
        • Probador de impacto de dardo que cae
        • Probador de impacto de paneles de madera
      • Instrumentos de prueba de adherencia
        • Probador de corte transversal de adherencia
        • Probador de corte transversal de adhesión de hoja única
        • Kit de prueba de regla de corte transversal de adherencia
        • Kit de prueba de adherencia X corte
        • Probador automático de corte transversal de adherencia de pintura
        • Probador de adherencia por arranque completamente automático
        • Probador de adherencia de arranque automático
        • Probador de adherencia al pelado
        • Probador de fricción de coeficiente COF
        • Peel Tester para adhesivos
        • Probador de tachuelas de bucle
        • Probador de adherencia
      • Instrumentos de prueba de dureza
        • Probador de dureza de lápiz
        • Probador de dureza de lápiz de escritorio
        • Probador de dureza de lápiz motorizado
        • Bolígrafo de dureza Dur-O-Test
        • Probador de dureza de péndulo
        • Probador automático de arañazos
        • Probador automático de marcha
        • Herramienta para rascar
        • Probador de dureza de rebote Leeb
        • Probador portátil de dureza Leeb
        • Probador de dureza portátil
        • Probador de dureza de bolsillo digital
        • Durómetro portátil Rockwell y Brinell
        • Probador de dureza Rockwell de mano
        • Probador de dureza Brinell de carga pequeña
        • Probador de dureza Brinell con pantalla táctil
        • Probador de dureza Brinell
        • Probador de dureza múltiple
        • Probador de dureza Rockwell con pantalla táctil
        • Probador de dureza Rockwell
        • Probador de dureza superficial Rockwell
        • Probador de dureza Rockwell de muestra grande
        • Probador de dureza de plástico Rockwell
        • Probador de dureza Vickers
        • Probador de dureza Vickers de carga pequeña
        • Probador de dureza Knoop
        • Probador de microdureza con pantalla táctil
        • Probador de microdureza
        • Probador de sangría Buchholz
      • Instrumentos de prueba de abrasión
        • Probador de fregado por abrasión húmeda
        • Probador avanzado de fregado por abrasión en húmedo
        • Probador de abrasión rotatorio de plataforma única
        • Probador de abrasión rotatorio de plataforma dual
        • Probador de abrasión lineal
        • Medidor de cromo manual
        • Crockómetro eléctrico
        • Crockmeter rotatorio eléctrico
        • Crockómetro rotatorio
        • Crockmeter circular de cuero
        • Crockómetro Gakushin
        • Probador de abrasión y pilling Martindale
        • Probador de cilindro oscilatorio Wyzenbeek
        • Probador de abrasión RCA
        • Probador de abrasión de arena que cae
        • Escala de transferencia cromática de 9 pasos AATCC
        • Tarjetas de prueba de color de escala de grises AATCC
        • Probador de abrasión avanzado
      • Sistemas de ensayo de tracción
        • Máquina de tracción de una sola columna
        • Máquina de tracción de doble columna
      • Sistemas de prueba de fragilidad
        • Sistema de prueba de fragilidad
        • Probador de fragilidad
      • Prueba de lavado de solidez del color
        • Tester de solidez del color al lavado
    • Instrumentos de prueba climática
      • Equipo de prueba de envejecimiento
        • Cámara de prueba de envejecimiento UV de escritorio
        • Cámara de prueba de envejecimiento por luz ultravioleta
        • Cámara de prueba de exposición a la intemperie de xenón
        • Cámara de prueba de xenón con sistema de filtro de agua
        • Cámara de prueba de envejecimiento por arco de xenón
      • Control de Corrosión
        • Cámara de niebla salina
        • Cámara de prueba de niebla salina
        • Cámara de prueba avanzada de niebla salina
      • Temperatura y humedad
        • Horno de laboratorio
        • Horno de laboratorio a prueba de explosiones
        • horno de mufla
        • Horno de vacío de laboratorio
        • Cámara de luz vertical
        • Baño a Baja Temperatura
        • Baño de agua de laboratorio
        • Baño de aceite de laboratorio
        • Cámara de prueba climática
        • Incubadora de baño seco
      • Curado ultravioleta
        • Equipo de curado UV
        • Radiómetro de luz ultravioleta
    • Molienda de dispersión de mezcla
      • Mezclador de laboratorio eléctrico
      • Agitador eléctrico de laboratorio
      • Mezclador de laboratorio automático con temporizador
      • Dispersor de alta velocidad de laboratorio
      • Dispersor multiusos de laboratorio
      • Dispersor de laboratorio con temporizador
      • Dispersor automático de laboratorio con temporizador y medición de temperatura
      • Mezclador y dispersor de alto cizallamiento de laboratorio a prueba de explosiones
      • Molino de cesta de laboratorio
      • Agitador de latas de pintura de dos brazos
      • Agitador automático de pintura
      • Agitador de pintura neumático
      • Dispensador de pintura
      • Dispensador automático de pintura
      • Agitador orbital automático
      • Agitador de placas de laboratorio
      • Agitador orbital grande
      • Dispersor de vacío de laboratorio
      • Dispersor de vacío avanzado
      • Molino de polvo automático
      • Molino de polvo de escritorio
      • Molino de tres rodillos
      • Amoladora Müller
      • Molino de arena horizontal de laboratorio
      • Mezclador neumático de laboratorio
      • Mezclador neumático con elevador
      • mezclador nano
      • Dispersor de alta velocidad de vacío de laboratorio
      • Emulsionante de laboratorio
      • Licuadora de laboratorio V
    • Prueba de las propiedades de la tinta de impresión
      • Probador de abrasión por frotamiento con solvente MEK
      • Probador avanzado de abrasión por solvente MEK
      • Prensa de prueba de tinta
      • Prueba de tinta de impresión
    • Instrumentos de prueba de laboratorio
      • Balanzas de pesaje de laboratorio
      • Balanzas de pesaje de laboratorio con pantalla táctil a color
      • Probador Schopper Riegler
      • Probador hidráulico Schopper Riegler
      • Probador digital Schopper Riegler
      • Probador de freeness estándar canadiense
      • Probador de punto de goteo
      • Probador de punto de goteo ASTM D2265
      • Probador automático de punto de goteo ASTM D2265
      • Balanzas de banco
      • Básculas de plataforma
      • Probador de permeabilidad al gas
      • Probador de permeabilidad al vapor de agua
    • Preparación científica de muestras
      • Preparación científica de muestras textiles
        • Cortador de muestras GSM
    • Instrumentos de prueba de textiles
      • Probador de abrasión MIE
      • Probador de abrasión de desgaste universal
    • Instrumentos de prueba ambiental
      • Medidor de calidad del aire portátil
      • Muestreador de aire ambiental
    • Instrumentos de prueba de plástico
      • Probador de impacto Charpy Izod
      • Probador de impacto Charpy
      • Probador de impacto Izod
      • Probador de índice de flujo de fusión
    • Instrumentos de prueba de papel
      • Probador Schopper Riegler
      • Probador hidráulico Schopper Riegler
      • Probador digital Schopper Riegler
      • Probador de freeness estándar canadiense
      • Calibrador ISO 534
      • Medidor de espesor de papel automático ISO 534
      • Probador de resistencia al estallido de papel
      • Probador de resistencia al estallido de cartón
    • Instrumentos de prueba de concreto
      • Martillo de rebote de hormigón
      • Martillo de rebote de hormigón digital
  • Equipo
    • Dispersores de producción industrial
      • Dispersor Industrial
      • Dispersor industrial de doble eje
      • Dispersor Industrial de Ejes Múltiples
      • Dispersor de vacío industrial
      • Dispersor de alta viscosidad
      • Dispersor en tanque
      • Dispersor presurizado en tanque
      • Dispersor en tanque al vacío
      • Cuchillas de dispersión
    • Mezcladores y agitadores de producción industrial
      • Mezclador en tanque
    • Licuadoras de producción industrial
      • licuadora
      • Licuadora de doble cono
    • Molinos y trituradoras de producción industrial
      • Molino de cesta industrial
      • Molino de tres rodillos
  • quimicos
  • Contáctenos
  • Sobre nosotros
LIBRECOTIZAR
  • Inicio
  • Ciencia e investigación
  • Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow: Essential Evaluation Method for Pharmaceutical Powder Flowability

por INDUSTRIA DE PRODUCTOS QUALTECH Ciencia e Investigación / viernes, 13 junio 2025 / Publicado en Ciencia e investigación

The European Pharmacopoeia (Ph. Eur.) Standard Funnel Method 2.9.36 for Powder Flow represents a critical test method used across pharmaceutical manufacturing to evaluate how well powder materials flow. When you work with pharmaceutical powders in production settings, understanding flow properties helps predict how these materials will behave during processes like tableting, capsule filling, and bulk transportation. This standardized method provides quantitative measurements that directly impact product quality, manufacturing efficiency, and ultimately patient safety by ensuring consistent medication dosing.

Laboratory scene showing a funnel measuring powder flow into a container with scientific equipment in the background.

The test works by measuring how quickly a specific amount of powder flows through a standardized funnel with a specific opening size. You can use the results to categorize powders based on their flowability, from “excellent” to “very poor” flowing materials. This classification helps formulation scientists select appropriate excipients, determine if flow enhancers are needed, and design manufacturing processes that accommodate the specific flow characteristics of their powder blends.

Unlike other powder flow methods such as angle of repose or compressibility index tests, the funnel method simulates real-world processing conditions that powders encounter during manufacturing. You can easily compare different powder batches using this test, which makes it valuable for both quality control and formulation development stages of pharmaceutical production. The method’s standardization across Europe ensures consistent evaluation criteria regardless of where testing occurs.

Conclusiones clave

  • The Ph. Eur. Standard Funnel Method 2.9.36 quantifies powder flow properties that directly impact pharmaceutical manufacturing quality and efficiency.
  • You can use test results to categorize powders, select appropriate excipients, and design manufacturing processes that accommodate specific flow characteristics.
  • The standardized nature of the test allows for consistent evaluation of powder flow across different batches and manufacturing facilities throughout Europe.

Overview of Ph. Eur. Standard Funnel Method 2.9.36

Laboratory scene showing a standard funnel with powder flowing through it into a container, illustrating the measurement of powder flow.

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing processes. This standardized method helps evaluate how well powdered substances move through processing equipment.

Definition and Scope

The Standard Funnel Method 2.9.36 is a test procedure in the European Pharmacopoeia that measures the flowability of powders used in pharmaceutical production. It evaluates how easily powder flows through a funnel with standard dimensions under controlled conditions. The test applies to dry powders and granules intended for various pharmaceutical applications.

This method specifically examines the time it takes for a powder sample to flow through the funnel, providing data on flow properties. Poor flow can cause manufacturing problems like inconsistent tablet weights or capsule filling issues.

The scope covers substances for pharmaceutical use, including active ingredients and excipients. It helps determine if materials are suitable for specific manufacturing processes.

Historical Context and Standardization

The Standard Funnel Method evolved from earlier industrial powder testing approaches but was standardized specifically for pharmaceutical applications. In the 1980s and 1990s, regulatory bodies recognized the need for consistent methods to evaluate powder properties.

The European Pharmacopoeia Commission formalized this test to ensure reliable quality control across the pharmaceutical industry. This standardization addressed previous inconsistencies in testing methods between manufacturers.

Over time, the method has been refined through multiple supplement editions of the European Pharmacopoeia. As noted in the search results, the 6.0 Supplement 6.3 included important recommendations on quality standards for pharmaceutical substances.

Alignment With Other Regulatory Guidelines

The Ph. Eur. Standard Funnel Method 2.9.36 aligns with broader pharmaceutical quality guidelines. It complements other powder characterization methods like angle of repose, compressibility index, and bulk density testing.

The test is recognized by other major pharmacopoeias including the United States Pharmacopeia (USP) and Japanese Pharmacopoeia (JP). This alignment helps pharmaceutical manufacturers meet global regulatory requirements with standardized testing protocols.

Results from this method can be used to classify powders based on their flow properties. These classifications help determine if substances need modification for specific uses, as mentioned in the search results about substances being labeled for “intended for a specific use.”

You can use these test results to make decisions about processing parameters or whether flow enhancers are needed.

Specific Use and Primary Purpose

A laboratory scene showing a funnel with powder flowing through it into a container, observed by a person in a lab coat.

The Ph. Eur. Standard Funnel Method 2.9.36 serves as a fundamental tool for measuring powder flow properties in pharmaceutical manufacturing and quality control. This standardized approach helps ensure consistency in powder behavior evaluation across the pharmaceutical industry.

Designed Evaluation Criteria

The method specifically evaluates the flowability of pharmaceutical powders by measuring the time it takes a specific amount of powder to flow through a standardized funnel. This flow time directly correlates with powder flowability characteristics.

You can use this test to determine if your powder will flow properly in manufacturing equipment. The method also measures the angle of repose – the steepest angle at which a powder forms a stable pile.

A smaller angle indicates better flow properties, while a larger angle suggests poor flowability. These measurements help you predict how powders will behave during tableting, capsule filling, and other pharmaceutical manufacturing processes.

Key Applications in Industry

In pharmaceutical manufacturing, the Funnel Method helps you determine if your powder formulation is suitable for high-speed production lines. Poor flowing powders can cause weight variations in tablets or capsules, leading to dosage inconsistencies.

This test is particularly valuable when:

  • Selecting excipients for direct compression formulations
  • Troubleshooting manufacturing issues related to powder flow
  • Developing new powder-based products
  • Establishing quality control specifications

The method applies to various pharmaceutical materials including active ingredients, excipients, and finished powder blends. Quality control departments regularly use this test to verify batch-to-batch consistency and ensure manufacturing processes remain reliable and reproducible.

Materials and Products Assessed

A scientist in a lab coat monitors powder flowing through a funnel into a container as part of a laboratory test on powder flow characteristics.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow testing is applicable to a specific range of powder materials commonly found in pharmaceutical applications. This test method provides valuable insights into powder flowability, which affects numerous manufacturing processes.

Suitable Powder Types

The Standard Funnel Method is particularly suitable for free-flowing pharmaceutical powders. These include excipients like microcrystalline cellulose, lactose, and dicalcium phosphate. Active pharmaceutical ingredients (APIs) with good flow properties can also be assessed effectively.

Granular materials used in tablet and capsule formulations are ideal candidates for this method. Many direct compression blends benefit from this assessment before tableting.

You’ll find this method especially valuable for testing:

  • Diluents: Lactose, mannitol, sorbitol
  • Disintegrants: Sodium starch glycolate, croscarmellose sodium
  • Glidants: Colloidal silicon dioxide, talc
  • Lubricants: Magnesium stearate, stearic acid

Typical Sample Characteristics

Samples tested via the Standard Funnel Method typically have particle sizes ranging from 100-1000 μm. The method works best with dry, non-cohesive powders that flow freely under gravity.

Your test samples should ideally have:

  • Moisture content below 3%
  • Bulk density between 0.3-1.5 g/cm³
  • Minimal electrostatic properties
  • Regular particle morphology

Powders should be properly conditioned at controlled temperature and humidity prior to testing. Most samples require 50-100g of material to obtain reliable results.

The particle size distribution should be relatively uniform to avoid segregation during testing.

Limitations on Material Use

You should avoid using this method for highly cohesive or very fine powders (below 50 μm). These materials often experience flow problems like bridging in the funnel.

The test is not suitable for:

  • Hygroscopic materials that absorb moisture during testing
  • Powders with extreme static charges
  • Materials with needle-like particles
  • Very dense powders (>2.0 g/cm³)
  • Highly compressible materials

Temperature and humidity significantly affect results, so materials sensitive to environmental conditions require special consideration.

The method doesn’t work well with wet granulations or materials with moisture content above 5%.

General Principles of Powder Flow Testing

Laboratory setup showing powder flowing through a transparent funnel into a container, with scientific instruments nearby on a clean bench.

Powder flow testing evaluates how easily powder materials move and flow under various conditions. These tests provide critical data for industries handling powders in manufacturing, storage, and processing operations.

Fundamentals of Flowability

Flowability refers to a powder’s ability to flow in a predictable and reliable manner. This property affects how powders behave during processing, packaging, and dispensing operations.

When examining powder flow, you need to consider both cohesive forces (particles sticking together) and gravitational forces. The balance between these determines how well a powder will flow.

Good powder flow is characterized by consistent movement without bridging, ratholing, or segregation. Poor flowing powders often show erratic behavior and can cause production interruptions.

Several classification systems exist to categorize powders based on flowability – from free-flowing to very cohesive. These classifications help you select appropriate handling equipment and processing parameters.

Parameters Measured

Flow rate measures how quickly powder passes through an opening and is often expressed in g/s or ml/s. This directly impacts production speed and efficiency.

Angle of repose quantifies the steepest angle at which powder remains stable without flowing. Lower angles (≤30°) indicate better flowability, while higher angles (≥45°) suggest poor flow properties.

Compressibility index and Hausner ratio evaluate how powder density changes under pressure. These calculations use both bulk and tapped densities to assess flow characteristics.

Key Flow Parameters:

  • Flow rate
  • Angle of repose
  • Bulk density
  • Tapped density
  • Compressibility
  • Cohesion
  • Wall friction

Shear testing measures the internal friction of powder samples, providing detailed information about flow behavior under various stress conditions.

Influencing Factors on Powder Flow

Particle size significantly impacts flow – generally, larger particles (>100μm) flow better than smaller ones (<50μm). Very fine powders often exhibit poor flow due to stronger cohesive forces.

Particle shape affects how particles interact. Spherical particles typically flow better than irregular, needle-shaped, or flaky particles that can interlock and resist movement.

Moisture content can dramatically alter powder flow. Even small increases in moisture can create liquid bridges between particles, reducing flowability.

Environmental conditions like humidity, temperature, and storage time influence flow properties. Powders may absorb moisture from humid air, leading to caking and reduced flowability.

Electrostatic charges, especially in dry environments, can cause particles to repel or attract each other, disrupting normal flow patterns.

Interpretation of Results and Industry Implications

Laboratory scene showing a funnel apparatus measuring powder flow into a container, surrounded by scientific tools and data charts on flow rates.

The data from the Ph. Eur. Standard Funnel Method provides critical insights that directly impact manufacturing decisions and product quality. Understanding these results helps you optimize formulations and processing parameters.

Analyzing Powder Flow Data

Flow rate measurements obtained through the funnel method are typically expressed in seconds or grams per second. Lower flow times indicate better flowability, while higher values suggest poor flow properties.

You should always compare your results against established acceptance criteria for your specific material. A common approach is creating flowability classifications:

  • Excellent flow: < 10 seconds
  • Good flow: 10-15 seconds
  • Fair flow: 16-20 seconds
  • Poor flow: > 20 seconds

Variability in results is equally important. High standard deviations between measurements often indicate inconsistent powder properties that may cause processing issues.

Impact on Product Quality and Manufacturing

Poor powder flow directly affects tablet weight variation, content uniformity, and dissolution profiles in pharmaceutical products. When powders flow inconsistently, you’ll experience challenges with die filling in tablet presses.

Manufacturing efficiency decreases with poorly flowing powders. Production speeds must be reduced to maintain quality, and equipment modifications may be necessary. This translates to higher production costs and reduced output.

You can use funnel test results to guide formulation decisions. Adding flow enhancers like colloidal silicon dioxide (0.2-0.5%) often improves flowability when test results are poor. Equipment selection also depends on these results—high-shear mixers may be needed for powders with poor flow properties.

Representative Use Cases and Examples

Laboratory setup showing a funnel with powder flowing into a container, illustrating a powder flow measurement process.

The Ph. Eur. Standard Funnel Method 2.9.36 for Powder Flow has practical applications across various industries. Its standardized approach makes it valuable for quality control and material characterization.

Application for Pharmaceutical Powders

In pharmaceutical manufacturing, the funnel method helps evaluate flow properties of active pharmaceutical ingredients (APIs) and excipients. You can use this test to determine if a powder will flow consistently through tablet press hoppers during production.

For example, when formulating a direct compression tablet, you would test lactose and microcrystalline cellulose excipients to ensure proper flow characteristics. Poor flow can cause weight variations in final dosage forms.

The test also helps you determine:

  • Whether granulation is needed to improve powder flowability
  • If glidants (like silica) should be added to your formulation
  • How environmental conditions might affect your powder’s performance

Quality control departments routinely use this test to verify batch-to-batch consistency of raw materials.

Other Industrial Examples

Beyond pharmaceuticals, the funnel method finds applications in food processing, cosmetics, and chemical industries. Food manufacturers use it to test ingredients like flour, sugar, and powdered flavors.

In cement and construction materials testing, you can apply this method to evaluate the flow properties of fine aggregates and additives. This helps ensure consistent concrete quality.

Cosmetic producers rely on this test for:

  • Evaluating face powders and foundations
  • Testing raw materials for production
  • Validating manufacturing processes

The method is particularly valuable when you need to compare different powder lots or suppliers. For instance, a paint manufacturer might test various pigment powders to ensure they’ll flow properly through production equipment.

Best Practices for Implementation

A laboratory technician pouring powder into a standard funnel apparatus to measure powder flow, with scientific instruments and a clean lab environment in the background.

Implementing the Ph. Eur. Standard Funnel Method 2.9.36 correctly ensures reliable powder flow measurements for pharmaceutical applications. Attention to detail during setup and execution is critical for meaningful results.

Sample Preparation Recommendations

Material Conditioning: You should store powder samples in controlled environments (20-25°C, 40-60% relative humidity) for at least 24 hours before testing to ensure equilibration.

Quantity Preparation: Prepare at least 100g of sample for each test run. Use a standardized method to mix bulk samples, avoiding segregation of particles by size or density.

Particle Size Considerations: For materials with larger particles (>2mm), you may need to adjust the funnel diameter. Note any modifications in your test report.

Moisture Control: Check moisture content before testing. Even small changes can significantly affect flow properties, especially for hygroscopic materials.

Pre-test Handling: Minimize vibration or compression during transfer to prevent altering the powder’s natural flow characteristics.

Ensuring Reproducibility and Reliability

Equipment Verification: You should calibrate your funnel dimensions against reference standards quarterly. The outlet opening must maintain precise specifications (10.0±0.01mm).

Systematic Testing Protocol: Conduct at least three replicate measurements for each sample. Discard results with >5% variation and investigate the cause.

Environmental Controls: Maintain consistent testing conditions. Temperature fluctuations of even 3°C can alter flow results by up to 10% for some formulations.

Reference Standards: Include a reference standard powder (like microcrystalline cellulose) in your testing sequence to verify system performance.

Documentation: Record all testing parameters including:

  • Room temperature and humidity
  • Sample preparation details
  • Any deviations from standard protocol
  • Observations of unusual flow behavior

Comparison With Alternative Powder Flow Methods

The Ph. Eur. Standard Funnel Method 2.9.36 is one of several techniques used to evaluate powder flowability in pharmaceutical and other industries. Different methods provide complementary data that can help you select the most appropriate manufacturing processes.

Contrast With ASTM Methods

ASTM D6393 (Bulk Solids Characterization) differs from the Ph. Eur. method by measuring multiple flow properties rather than just flow rate. This comprehensive approach helps you predict powder behavior under various processing conditions.

ASTM B213 specifically addresses metal powders, using a calibrated funnel with standardized dimensions that may differ from the Ph. Eur. glass funnel. This method is tailored for metallurgical applications rather than pharmaceuticals.

ASTM D7891 employs a powder rheometer to measure dynamic flow properties. Unlike the static measurement of the funnel method, rheometers can simulate different processing forces and conditions.

Advantages and Limitations

The Ph. Eur. funnel method offers simplicity and repeatability with minimal equipment requirements. You can quickly assess basic flow characteristics without extensive training or complex data interpretation.

However, this method has notable limitations. It only works for relatively free-flowing powders and cannot evaluate cohesive materials that won’t flow through the funnel at all.

The funnel method provides a single data point (flow time) rather than comprehensive flow profiles. For complete characterization, you should combine it with additional tests like angle of repose or compressibility index.

Environmental factors such as humidity and static electricity can significantly affect results, requiring careful control of testing conditions for meaningful comparisons.

Frequently Asked Questions

The Ph. Eur. Standard Funnel Method 2.9.36 measures powder flow properties critical for pharmaceutical manufacturing. This test provides valuable data about material behavior in production environments.

What is the purpose of the Ph. Eur. Standard Funnel Method 2.9.36 Powder Flow in assessing material properties?

The Ph. Eur. Standard Funnel Method 2.9.36 evaluates how easily pharmaceutical powders flow through a standardized funnel. This test measures the time it takes for a specific amount of powder to flow through the funnel’s orifice.

The method helps determine if a powder will flow consistently during manufacturing processes like tableting or capsule filling. Poor flowing materials can cause weight variations and dosing problems in final products.

The test serves as an early indicator of potential processing issues, allowing formulators to modify compositions or processing conditions before full-scale production.

How does the Ph. Eur. Standard Funnel Method 2.9.36 contribute to the quality control in pharmaceutical manufacturing?

The Standard Funnel Method provides a reproducible way to assess batch-to-batch consistency of pharmaceutical materials. By establishing acceptable flow time ranges, manufacturers can quickly identify when raw materials deviate from specifications.

Quality control teams use these measurements to approve or reject incoming materials before they enter production. This prevents costly manufacturing delays and potential product failures.

The method helps maintain compliance with regulatory requirements by ensuring consistent product performance across batches. Documentation of flow properties becomes part of a product’s quality history.

Which types of powders or granular materials are typically tested using the Standard Funnel Method 2.9.36, and why is it significant?

Pharmaceutical excipients like lactose, microcrystalline cellulose, and starch are commonly tested with this method. These materials form the bulk of many tablet and capsule formulations.

Active pharmaceutical ingredients (APIs) with sufficient quantity per dose may also undergo testing. Understanding API flow properties helps determine appropriate manufacturing methods.

Granulated materials produced during wet or dry granulation processes benefit from this testing. The method helps verify if granulation improved flow characteristics as intended.

What fundamental principles govern the operation of the Ph. Eur. Powder Flow method, and how do they relate to material behavior?

Gravity is the primary force driving powder flow through the funnel. The method measures how effectively particles overcome friction and cohesive forces when moving under gravity’s influence.

Particle size, shape, density, and surface characteristics all affect flow time results. Smaller, irregularly shaped particles typically flow more slowly due to increased surface area and cohesion.

Moisture content significantly impacts flow behavior by creating liquid bridges between particles. The method indirectly assesses how these physical properties combine to affect overall flowability.

Can you describe how the results of the Ph. Eur. Standard Funnel Method 2.9.36 are interpreted, and what implications they have for product development?

Results are typically reported as flow time in seconds for a specified powder mass. Shorter flow times indicate better flowing materials that will likely process more efficiently.

Comparative analysis between materials helps formulators select excipients with complementary properties. Blending a poorly flowing API with free-flowing excipients may improve overall mixture performance.

Flow time trends can signal potential stability issues when tracked over a product’s shelf life. Increasing flow times might indicate moisture uptake or particle agglomeration requiring formulation adjustments.

How does the Ph. Eur. Standard Funnel Method 2.9.36 compare to other powder flowability testing methods in terms of accuracy and application?

The Funnel Method offers simplicity and speed compared to more complex techniques like shear cell testing. However, it provides less detailed information about fundamental powder properties.

Unlike angle of repose measurements, which evaluate static powder behavior, the Funnel Method assesses dynamic flow under gravity. This better mimics conditions in feeding hoppers and fill systems.

The method complements rather than replaces techniques like Carr’s Index or Hausner Ratio. For comprehensive material characterization, formulators typically employ multiple test methods to develop a complete flowability profile.

Sobre INDUSTRIA DE PRODUCTOS QUALTECH Ciencia e Investigación

What you can read next

ASTM B212-21 Standard Test Method for Apparent Density: Essential Guide for Metal Powder Testing
DIN EN 12047 Solid Fertilizers – Measurement of Static Angle of Repose: Essential Test for Quality Control and Material Handling in Fertilizer Production
Método de ensayo de rayado ISO 1518 para pinturas y barnices: determinación de la resistencia al rayado

OBTENGA UNA CUOTA GRATIS

Contáctenos – Nos gustaría saber de usted

Obtenga información ahora sobre productos, soporte técnico, servicio al cliente, ventas, relaciones públicas, servicios profesionales y socios. También puede proporcionar comentarios en nuestro sitio web.
Por favor complete este formulario. Uno de nuestros especialistas responderá a su consulta en breve. Alternativamente, contáctenos a través de los detalles de la compañía en los EE. UU., en Australia o en el Reino Unido.

    Tenga en cuenta que respetamos su privacidad y mantenemos sus datos estrictamente confidenciales.

    ASTM
    ANSI
    bsi
    CEI
    AATCC
    TÜV
    YO ASI
    ESTRUENDO

    © 1978 - 2025 INDUSTRIA DE PRODUCTOS QUALTECH Términos de Uso Términos y condiciones Galletas Contáctenos

    SUBIR
    Este sitio web utiliza cookies para mejorar su experiencia, sin embargo, respetamos su privacidad y las cookies solo recopilan datos anónimos. Respetamos su privacidad y puede optar por no participar si lo desea.
    Configuración de cookiesAceptar todo
    Gestionar el consentimiento

    Descripción general de privacidad

    Este sitio web utiliza cookies para mejorar su experiencia mientras navega por el sitio web. De ellas, las cookies que se clasifican como necesarias se almacenan en su navegador, ya que son esenciales para el funcionamiento de las funciones básicas del sitio web. También utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador sólo con su consentimiento. También tiene la opción de optar por no recibir estas cookies. Pero optar por no recibir algunas de estas cookies puede afectar su experiencia de navegación.
    Necesario
    Siempre activado
    Las cookies necesarias son absolutamente esenciales para que el sitio web funcione correctamente. Estas cookies garantizan funcionalidades básicas y características de seguridad del sitio web, de forma anónima.
    GalletaDuraciónDescripción
    cookielawinfo-checkbox-análisis11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. La cookie se utiliza para almacenar el consentimiento del usuario para las cookies en la categoría "Análisis".
    cookielawinfo-casilla-funcional11 mesesLa cookie se establece mediante el consentimiento de cookies del RGPD para registrar el consentimiento del usuario para las cookies en la categoría "Funcional".
    cookielawinfo-casilla-necesaria11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. Las cookies se utilizan para almacenar el consentimiento del usuario para las cookies en la categoría "Necesarias".
    cookielawinfo-checkbox-otros11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. La cookie se utiliza para almacenar el consentimiento del usuario para las cookies en la categoría "Otros".
    cookielawinfo-casilla-rendimiento11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. La cookie se utiliza para almacenar el consentimiento del usuario para las cookies en la categoría "Rendimiento".
    política_de_cookies_vista11 mesesLa cookie la establece el complemento GDPR Cookie Consent y se utiliza para almacenar si el usuario ha dado su consentimiento o no para el uso de cookies. No almacena ningún dato personal.
    Funcional
    Las cookies funcionales ayudan a realizar ciertas funcionalidades, como compartir el contenido del sitio web en plataformas de redes sociales, recopilar comentarios y otras funciones de terceros.
    Actuación
    Las cookies de rendimiento se utilizan para comprender y analizar los índices clave de rendimiento del sitio web, lo que ayuda a ofrecer una mejor experiencia de usuario a los visitantes.
    Analítica
    Las cookies analíticas se utilizan para comprender cómo interactúan los visitantes con el sitio web. Estas cookies ayudan a proporcionar información sobre métricas: número de visitantes, tasa de rebote, fuente de tráfico, etc.
    Anuncio
    Las cookies publicitarias se utilizan para proporcionar a los visitantes anuncios y campañas de marketing relevantes. Estas cookies rastrean a los visitantes en los sitios web y recopilan información para proporcionar anuncios personalizados.
    Otros
    Otras cookies no categorizadas son aquellas que están siendo analizadas y aún no han sido clasificadas en ninguna categoría.
    GUARDAR Y ACEPTAR
    es_ESEspañol
    en_USEnglish da_DKDansk de_DEDeutsch elΕλληνικά es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês es_ESEspañol
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português