INDUSTRIA DE PRODUCTOS QUALTECH

INDUSTRIA DE PRODUCTOS QUALTECH

Valores reales para nuestros clientes y clientes

EE. UU.: +1 720 897 7818
Reino Unido: +44 161 408 5668
Australia: +61 2 8091 0618

E-mail: [email protected]

INDUSTRIA DE PRODUCTOS QUALTECH
2186 South Holly Street, Denver, Colorado 80222, EE. UU.

Abrir en Google Maps
  • Bienvenidos
  • Instrumentos
    • Medición de viscosidad
      • Copas de flujo
        • Copa de flujo ISO ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Copas Ford ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Copa Zahn ASTM D1084 ASTM D4212 BS EN 535
        • Copa japonesa IWATA
        • Copa DIN DIN 53211
        • Copa de presión ISO 2811-4 BS 3900-A22
        • Soportes y soportes para copas de flujo de viscosidad
      • Viscosímetro rotacional
        • Viscosímetro de mano
        • Viscosímetro portátil
        • Viscosímetro rotacional digital
        • Viscosímetro de husillo con pantalla táctil
        • Viscosímetro Stormer de Krebs
        • Viscosímetro de alta temperatura
        • Viscosímetro de cono y placa
        • Baño de viscosidad
        • Viscosímetro Laray
        • Viscosímetro de harina y almidón
    • Pruebas de apariencia
      • Brillo
        • Medidor de brillo
        • Medidor de brillo con microlente
        • Brillómetro de neblina
        • Ángulo de 45° del brillómetro
        • Ángulo de 75° del brillómetro
        • Brillómetro de bolsillo
        • Medidor de brillo con pantalla táctil
        • Lector de color y medidor de brillo
        • Brillómetro en línea
        • Minibrillómetro
      • Transparencia Haze Claridad
        • Medidor de neblina
        • Medidor de turbidez portátil
        • Medidor de turbidez de escritorio
      • Color
        • Lector de color de mano
        • Lector de color portátil
        • Lector de color de mesa
        • Espectrofotómetro de mano
        • Espectrofotómetro de escritorio
        • Gabinete de evaluación de color
        • Estación de prueba de color
        • Comparador de colores Gardner
        • Tintómetro Lovibond
        • Cartas de colores RAL
        • Tarjetas de colores Pantone
        • Lector de color portátil para líquidos
        • Colorímetro de mano para polvos
        • Colorímetro portátil para productos farmacéuticos
        • Software de combinación de colores
      • Blancura
        • Medidor de blancura de mano
        • Medidor de blancura portátil
        • Medidor de blancura de escritorio ISO
        • Medidor de blancura CIE D65
        • Dispositivo de medición de porosidad
      • Espesor
        • Medidores de espesor de película húmeda
        • Medidor de espesor de película húmeda de rueda
        • Medidor de espesor de revestimiento
        • Medidor de espesor ultrasónico
        • Medidor de inspección de pintura
        • Medidor de espesor de plátano
        • Calibrar
        • Medidor de espesor de hoja
      • Opacidad de reflexión
        • Medidor de reflectancia
        • Medidor de reflectancia espectral portátil
        • Medidor de reflectancia de escritorio
        • Criptómetro digital
        • Medidor de reflectancia infrarroja
        • Medidor de transmisión de luz
        • Medidor de transmisión de luz de vidrio y lente
        • Medidor de transmitancia de luz 365nm y 550nm y 850nm y 940nm
        • Medidor de transmitancia de luz ultravioleta
        • Medidor de transmitancia de luz IR
        • Medidor de transmitancia de luz azul
        • Retrorreflectómetro de ángulo único
        • Retrorreflectómetro multiángulo
    • Serie de aplicaciones
      • recubridor por inmersión
      • Aplicador automático de película al vacío
      • Aplicador automático de película con mesa de aplicación de película de vidrio y acero inoxidable
      • Probador de nivelación
      • Probador SAG
      • Aplicadores de película
      • Recubridor de barra de alambre
      • Pistola de pintura
      • Recubridor giratorio
      • Mesa de vacío para aplicación de película
      • Superficie de extracción
      • Gráficos de tablero de ajedrez
      • Recubridor por inmersión en nitrógeno
      • Recubridor por inmersión multicapa
      • Recubridor por inmersión a temperatura constante
      • Casterguide para aplicador de película Cube
      • Cámara de pulverización automática de sustrato
      • Cabina de pulverización de lavado con agua
    • Medición de humedad
      • Valorador Karl Fischer
      • Valorador coulométrico Karl Fischer
      • Medidor de humedad digital
      • Analizador de humedad
      • Evaporador giratorio
    • Pruebas de propiedades físicas
      • Finura de molido
        • Medidores de finura de molienda
        • Medidores eléctricos de finura de molienda
      • Tiempo de secado
        • Registrador de tiempo de secado
        • Registrador de tiempo de secado automático
        • Probador de estado completamente seco
      • Densidad
        • Copas de densidad
        • Picnómetro de gases
        • Medidor de densidad de mano
        • Medidor de densidad de sobremesa
        • Densitómetro de mano
        • Densitómetro de transmisión
        • Densitómetro de transmisión óptica
        • Medidor de densidad de flotabilidad
        • Volúmetro Scott
        • Caudalímetro de pasillo
        • Caudalímetro Carney
        • Medidor de densidad aparente ASTM D1895 Método A
        • Medidor de densidad aparente ASTM D1895 Método B
        • Medidor de densidad aparente ISO R60
        • Medidor de densidad a granel
        • Volúmetro de densidad aparente
        • Toque el medidor de densidad
        • Ángulo de reposo de la pólvora
        • Probador de características de polvo
        • Sistema de análisis de limpieza de filtro automático
        • Picnómetro automático de densidad real
        • Caudalímetro Gustavsson
        • Medidor de densidad Arnold
        • Medidor de densidad aparente Método ISO R60
        • Medidor de densidad aparente ASTM D1895 Método A
        • Medidor de densidad aparente ASTM D1895 Método B
        • Medidor de densidad aparente ASTM D1895 Método C
        • Densímetro automático para líquidos
        • Medidor de densidad para líquidos
        • Gabinete Acústico Confort
      • Conductividad y pH
        • Medidor de pH de bolsillo
        • Medidor de pH portátil
        • Medidor de pH portátil
        • Medidor de pH de escritorio
        • Medidor de conductividad de mano
        • Medidor de conductividad portátil
        • Medidor de conductividad y pH de escritorio
        • Electrodo de pH
        • Electrodo selectivo de iones
        • Electrodo de oxígeno disuelto
        • Electrodo de referencia
        • Electrodo de conductividad
        • Electrodo Metálico
        • Electrodo de temperatura
      • Refracción
        • Refractómetro de mano
        • Refractómetro digital portátil
        • Refractómetro digital automático
        • Refractómetro digital
        • Refractómetro analógico
      • Aspereza
        • Medidor de rugosidad superficial
      • Temperatura y humedad
        • Barra MFFT con pantalla táctil
        • Medidor de humedad
        • Termómetro de laboratorio
        • Termómetro infrarojo
        • Probador de punto de inflamación de copa cerrada
        • Probador de punto de inflamación de copa cerrada de baja temperatura
        • Probador automático de punto de inflamación de copa cerrada
        • Probador de punto de inflamación Abel
        • Probador de punto de inflamación de copa abierta
        • Probador de punto de inflamación de copa abierta de baja temperatura
        • Probador de punto de reblandecimiento
        • Aparato de punto de fusión
        • Probador de punto de fusión con grabación de video
        • Probador de punto de fusión
        • Probador de punto de fusión de microscopio
        • Analizador óptico térmico
        • Probador de deflexión de calor
      • Medición de tensión
        • Medidor de tensión superficial Du Noüy Ring
        • Medidor de tensión superficial de placa Wilhelmy
      • Medición del tamaño de partículas
        • Analizador de tamaño de partículas
        • Tamiz de laboratorio
    • Pruebas de propiedades mecánicas
      • Instrumentos de prueba de flexibilidad y deformación
        • Probador de curvatura en T
        • Probador de curvatura de mandril cilíndrico
        • Probador de flexión de mandril cónico
        • Probador de ventosas
        • Probador de golpe de bola
        • Probador de compresión
        • Probador de aplastamiento de bordes
        • Probador de resistencia al estallido de papel
        • Probador de resistencia al estallido de cartón
        • Probador de resistencia al estallido textil
        • Probador de compresión de caja
        • Probador de aplastamiento de rodillos
        • Probador de flexibilidad de película de pintura
        • Sustratos de muestra del probador de flexibilidad de masilla
        • Probador automático de torsión de tapas de botellas
      • Instrumentos de prueba de impacto
        • Probador de impacto DuPont
        • Probador de impacto de servicio pesado
        • Probador de impacto universal
        • Probador de impacto de dardo que cae
        • Probador de impacto de paneles de madera
      • Instrumentos de prueba de adherencia
        • Probador de corte transversal de adherencia
        • Probador de corte transversal de adhesión de hoja única
        • Kit de prueba de regla de corte transversal de adherencia
        • Kit de prueba de adherencia X corte
        • Probador automático de corte transversal de adherencia de pintura
        • Probador de adherencia por arranque completamente automático
        • Probador de adherencia de arranque automático
        • Probador de adherencia al pelado
        • Probador de fricción de coeficiente COF
        • Peel Tester para adhesivos
        • Probador de tachuelas de bucle
        • Probador de adherencia
      • Instrumentos de prueba de dureza
        • Probador de dureza de lápiz
        • Probador de dureza de lápiz de escritorio
        • Probador de dureza de lápiz motorizado
        • Bolígrafo de dureza Dur-O-Test
        • Probador de dureza de péndulo
        • Probador automático de arañazos
        • Probador automático de marcha
        • Herramienta para rascar
        • Probador de dureza de rebote Leeb
        • Probador portátil de dureza Leeb
        • Probador de dureza portátil
        • Probador de dureza de bolsillo digital
        • Durómetro portátil Rockwell y Brinell
        • Probador de dureza Rockwell de mano
        • Probador de dureza Brinell de carga pequeña
        • Probador de dureza Brinell con pantalla táctil
        • Probador de dureza Brinell
        • Probador de dureza múltiple
        • Probador de dureza Rockwell con pantalla táctil
        • Probador de dureza Rockwell
        • Probador de dureza superficial Rockwell
        • Probador de dureza Rockwell de muestra grande
        • Probador de dureza de plástico Rockwell
        • Probador de dureza Vickers
        • Probador de dureza Vickers de carga pequeña
        • Probador de dureza Knoop
        • Probador de microdureza con pantalla táctil
        • Probador de microdureza
        • Probador de sangría Buchholz
      • Instrumentos de prueba de abrasión
        • Probador de fregado por abrasión húmeda
        • Probador avanzado de fregado por abrasión en húmedo
        • Probador de abrasión rotatorio de plataforma única
        • Probador de abrasión rotatorio de plataforma dual
        • Probador de abrasión lineal
        • Medidor de cromo manual
        • Crockómetro eléctrico
        • Crockmeter rotatorio eléctrico
        • Crockómetro rotatorio
        • Crockmeter circular de cuero
        • Crockómetro Gakushin
        • Probador de abrasión y pilling Martindale
        • Probador de cilindro oscilatorio Wyzenbeek
        • Probador de abrasión RCA
        • Probador de abrasión de arena que cae
        • Escala de transferencia cromática de 9 pasos AATCC
        • Tarjetas de prueba de color de escala de grises AATCC
        • Probador de abrasión avanzado
      • Sistemas de ensayo de tracción
        • Máquina de tracción de una sola columna
        • Máquina de tracción de doble columna
      • Sistemas de prueba de fragilidad
        • Sistema de prueba de fragilidad
        • Probador de fragilidad
      • Prueba de lavado de solidez del color
        • Tester de solidez del color al lavado
    • Instrumentos de prueba climática
      • Equipo de prueba de envejecimiento
        • Cámara de prueba de envejecimiento UV de escritorio
        • Cámara de prueba de envejecimiento por luz ultravioleta
        • Cámara de prueba de exposición a la intemperie de xenón
        • Cámara de prueba de xenón con sistema de filtro de agua
        • Cámara de prueba de envejecimiento por arco de xenón
      • Control de Corrosión
        • Cámara de niebla salina
        • Cámara de prueba de niebla salina
        • Cámara de prueba avanzada de niebla salina
      • Temperatura y humedad
        • Horno de laboratorio
        • Horno de laboratorio a prueba de explosiones
        • horno de mufla
        • Horno de vacío de laboratorio
        • Cámara de luz vertical
        • Baño a Baja Temperatura
        • Baño de agua de laboratorio
        • Baño de aceite de laboratorio
        • Cámara de prueba climática
        • Incubadora de baño seco
      • Curado ultravioleta
        • Equipo de curado UV
        • Radiómetro de luz ultravioleta
    • Molienda de dispersión de mezcla
      • Mezclador de laboratorio eléctrico
      • Agitador eléctrico de laboratorio
      • Mezclador de laboratorio automático con temporizador
      • Dispersor de alta velocidad de laboratorio
      • Dispersor multiusos de laboratorio
      • Dispersor de laboratorio con temporizador
      • Dispersor automático de laboratorio con temporizador y medición de temperatura
      • Mezclador y dispersor de alto cizallamiento de laboratorio a prueba de explosiones
      • Molino de cesta de laboratorio
      • Agitador de latas de pintura de dos brazos
      • Agitador automático de pintura
      • Agitador de pintura neumático
      • Dispensador de pintura
      • Dispensador automático de pintura
      • Agitador orbital automático
      • Agitador de placas de laboratorio
      • Agitador orbital grande
      • Dispersor de vacío de laboratorio
      • Dispersor de vacío avanzado
      • Molino de polvo automático
      • Molino de polvo de escritorio
      • Molino de tres rodillos
      • Amoladora Müller
      • Molino de arena horizontal de laboratorio
      • Mezclador neumático de laboratorio
      • Mezclador neumático con elevador
      • mezclador nano
      • Dispersor de alta velocidad de vacío de laboratorio
      • Emulsionante de laboratorio
      • Licuadora de laboratorio V
    • Prueba de las propiedades de la tinta de impresión
      • Probador de abrasión por frotamiento con solvente MEK
      • Probador avanzado de abrasión por solvente MEK
      • Prensa de prueba de tinta
      • Prueba de tinta de impresión
    • Instrumentos de prueba de laboratorio
      • Balanzas de pesaje de laboratorio
      • Balanzas de pesaje de laboratorio con pantalla táctil a color
      • Probador Schopper Riegler
      • Probador hidráulico Schopper Riegler
      • Probador digital Schopper Riegler
      • Probador de freeness estándar canadiense
      • Probador de punto de goteo
      • Probador de punto de goteo ASTM D2265
      • Probador automático de punto de goteo ASTM D2265
      • Balanzas de banco
      • Básculas de plataforma
      • Probador de permeabilidad al gas
      • Probador de permeabilidad al vapor de agua
    • Preparación científica de muestras
      • Preparación científica de muestras textiles
        • Cortador de muestras GSM
    • Instrumentos de prueba de textiles
      • Probador de abrasión MIE
      • Probador de abrasión de desgaste universal
    • Instrumentos de prueba ambiental
      • Medidor de calidad del aire portátil
      • Muestreador de aire ambiental
    • Instrumentos de prueba de plástico
      • Probador de impacto Charpy Izod
      • Probador de impacto Charpy
      • Probador de impacto Izod
      • Probador de índice de flujo de fusión
    • Instrumentos de prueba de papel
      • Probador Schopper Riegler
      • Probador hidráulico Schopper Riegler
      • Probador digital Schopper Riegler
      • Probador de freeness estándar canadiense
      • Calibrador ISO 534
      • Medidor de espesor de papel automático ISO 534
      • Probador de resistencia al estallido de papel
      • Probador de resistencia al estallido de cartón
    • Instrumentos de prueba de concreto
      • Martillo de rebote de hormigón
      • Martillo de rebote de hormigón digital
  • Equipo
    • Dispersores de producción industrial
      • Dispersor Industrial
      • Dispersor industrial de doble eje
      • Dispersor Industrial de Ejes Múltiples
      • Dispersor de vacío industrial
      • Dispersor de alta viscosidad
      • Dispersor en tanque
      • Dispersor presurizado en tanque
      • Dispersor en tanque al vacío
      • Cuchillas de dispersión
    • Mezcladores y agitadores de producción industrial
      • Mezclador en tanque
    • Licuadoras de producción industrial
      • licuadora
      • Licuadora de doble cono
    • Molinos y trituradoras de producción industrial
      • Molino de cesta industrial
      • Molino de tres rodillos
  • quimicos
  • Contáctenos
  • Sobre nosotros
LIBRECOTIZAR
  • Inicio
  • Ciencia e investigación
  • ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

ISO 13468-2: Understanding Plastics’ Total Luminous Transmittance Measurement Using Dual-Beam Method

por INDUSTRIA DE PRODUCTOS QUALTECH Ciencia e Investigación / sábado, 21 junio 2025 / Publicado en Ciencia e investigación

ISO 13468-2 is a specialized test method that measures how much light passes through plastic materials. This dual-beam approach helps manufacturers understand the optical properties of their plastic products, which is crucial for applications where clarity matters. The test provides valuable data about a material’s total luminous transmittance, which directly impacts product quality in industries like automotive, packaging, and electronics.

A laboratory scene showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

When plastic products need to be transparent or translucent, this test becomes essential. It works by comparing the intensity of light that passes through a plastic sample to a reference beam. You can use this method to evaluate various plastic materials including films, sheets, and molded parts. Unlike similar methods, ISO 13468-2’s dual-beam system compensates for light source fluctuations, making it more accurate.

Conclusiones clave

  • ISO 13468-2 measures how much light passes through plastic materials using a dual-beam system for greater accuracy.
  • The test is vital for quality control in industries requiring transparent plastics like packaging, electronics, and automotive components.
  • Proper implementation of this standard helps you ensure consistent optical properties and compare different plastic materials objectively.

Overview of ISO 13468‑2 and Its Significance

A laboratory scene showing a dual-beam spectrophotometer analyzing a transparent plastic sample with light beams passing through it, alongside charts representing data analysis.

ISO 13468-2 provides a standardized method for determining total luminous transmittance of transparent plastics using a double-beam instrument. This test standard is essential for quality control and material specification in industries where optical clarity of plastics is critical.

Purpose of the Test Standard

ISO 13468-2 was developed to provide a reliable way to measure how much light passes through transparent plastic materials. The standard specifically focuses on the visible spectrum region, which matters most for optical applications.

This test helps manufacturers ensure their plastic products meet required transparency levels. When you need to verify if a plastic material will allow sufficient light transmission for applications like window glazing, protective screens, or optical components, this standard provides the answer.

The results from this test are expressed as a percentage of total luminous transmittance, giving you a clear quantitative value to compare against requirements or specifications.

Scope and Applicability

ISO 13468-2 applies to planar transparent plastics and is particularly useful for materials between 1mm and 10mm thick. The standard is designed for testing using double-beam instruments, which offer improved accuracy over single-beam methods.

You can use this test method for:

  • Acrylic sheets
  • Polycarbonate panels
  • Transparent polymer films
  • Other clear plastic materials

The test is valuable in industries such as:

  • Automotive (for windows and light covers)
  • Construction (for glazing materials)
  • Electronics (for display screens)
  • Packaging (for clear containers)

This standard helps you assess optical quality and ensure consistency across production batches.

Comparison with ISO 13468-1

ISO 13468-2 differs from ISO 13468-1 primarily in the instrumentation used. While ISO 13468-1 uses a single-beam instrument, ISO 13468-2 employs a double-beam instrument that provides several advantages.

The double-beam approach offers:

  • Higher accuracy: By simultaneously measuring the reference and sample beams
  • Better stability: Less affected by light source fluctuations
  • Improved reliability: Reduces errors from environmental variations

You’ll find that double-beam measurements are less susceptible to drift over time. This makes ISO 13468-2 preferable when higher precision is required for quality control or research applications.

However, ISO 13468-1 might be sufficient for routine testing where ultimate precision isn’t critical, as single-beam equipment is typically less expensive and simpler to operate.

General Principles of Total Luminous Transmittance Measurement

A laboratory setup showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

The measurement of total luminous transmittance involves several key optical principles that help determine how much light passes through transparent plastic materials. These measurements are critical for quality control and product specifications in various industries.

Definition of Total Luminous Transmittance

Total luminous transmittance (τv) represents the ratio of transmitted luminous flux to incident luminous flux through a transparent material. Simply put, it measures how much visible light passes through a plastic sample.

This property is expressed as a percentage or decimal value between 0 and 1. A value of 100% indicates perfect transparency where all incident light passes through the material.

The measurement accounts for both direct transmission and diffuse transmission. Direct transmission occurs when light passes straight through without changing direction. Diffuse transmission happens when light scatters while passing through the material.

For plastic materials, this property helps determine optical clarity and is essential for applications requiring specific light transmission characteristics.

Fundamental Optical Concepts

When light interacts with transparent plastics, several phenomena occur simultaneously. Light can be transmitted, reflected, absorbed, or scattered by the material.

Transmission follows Snell’s Law, where light bends at the interface between different materials based on their refractive indices. This principle is fundamental to understanding how light travels through plastics.

Key optical factors affecting transmittance:

  • Material thickness
  • Surface roughness
  • Internal structure
  • Presence of additives or colorants
  • Wavelength of incident light

The human eye perceives light differently across the visible spectrum (380-780 nm). ISO 13468 accounts for this by using CIE Standard Illuminant D65 and the photopic response of the human eye to weight measurements.

Role of Dual‑Beam Spectrophotometry

Dual-beam spectrophotometry provides advantages over single-beam methods described in ISO 13468-1. This technique uses two light paths: one passing through the sample and one reference path.

The dual-beam approach automatically compensates for fluctuations in light source intensity, detector sensitivity, and environmental conditions. This results in more accurate and reliable measurements.

The spectrophotometer splits light into wavelengths across the visible spectrum. It then compares the intensity of light through both paths to determine transmittance at each wavelength.

Benefits of dual-beam systems:

  • Higher accuracy
  • Better repeatability
  • Reduced measurement time
  • Automatic compensation for instrument drift

These systems are particularly valuable for quality control applications where precise measurements are required for product certification and specification compliance.

Specific Use and Intended Purpose

A laboratory scene showing a dual-beam spectrophotometer measuring light passing through a transparent plastic sample.

ISO 13468-2 provides a standardized method for measuring how much light passes through transparent plastic materials. This test helps manufacturers ensure quality control and select appropriate materials for specific applications where light transmission is important.

Evaluation Objectives

ISO 13468-2 measures the total luminous transmittance of transparent plastics using a double-beam spectrophotometer. This test determines what percentage of visible light passes through a plastic sample.

Unlike single-beam methods (ISO 13468-1), the double-beam approach offers higher accuracy by comparing the test sample against a reference simultaneously.

The standard works best with colorless or faintly tinted plastics up to 10mm thick. Thicker samples can be tested if the instrument allows, but results may not be comparable to standard measurements.

The test specifically excludes plastics containing fluorescent materials, as these would affect measurement accuracy.

Industry Applications

This standard is vital in industries requiring transparent materials with specific light transmission properties. Automotive manufacturers use it to test windshields and light covers for proper visibility and safety compliance.

Electronics producers rely on it for display screens and protective covers. The packaging industry needs it to verify that clear containers meet appearance and protection requirements.

Medical device makers use this test to ensure proper light transmission through diagnostic equipment, protective shields, and containers.

Construction companies apply this standard when selecting transparent materials for windows, skylights, and light fixtures. The test helps verify materials will provide expected natural lighting levels.

Benefits in Material Selection

Using ISO 13468-2 helps you make better decisions when choosing transparent plastics. You can objectively compare different materials based on their light transmission properties rather than visual inspection alone.

The test identifies subtle differences between similar-looking materials that might perform differently in your application. This prevents costly mistakes in material selection.

When developing new products, you can use test results to balance light transmission with other properties like impact resistance or UV protection.

The standard also helps you verify supplier claims about material properties. You can confirm that the materials you receive consistently meet your specifications for light transmission.

Materials and Products Covered by ISO 13468‑2

A laboratory scene showing a dual-beam instrument measuring light passing through a clear plastic sheet to analyze its luminous transmittance.

ISO 13468-2 specifically addresses transparent and substantially colorless plastic materials for which total luminous transmittance measurements are required. This standard provides a reliable method for evaluating light transmission properties using a double-beam scanning spectrophotometer.

Applicable Types of Plastic Sheets and Films

ISO 13468-2 applies to planar transparent plastics that allow light to pass through with minimal distortion. This includes acrylic sheets (PMMA), polycarbonate panels, polyethylene terephthalate (PET) films, and other clear thermoplastics.

The standard is particularly useful for testing optical-grade polymers used in displays, windows, and covers. Materials like clear polystyrene, transparent polyvinyl chloride (PVC), and polypropylene films commonly undergo this testing.

You can apply this standard to both rigid plastic sheets and flexible films, as long as they maintain planar geometry during measurement.

Sample Characteristics

Samples tested under ISO 13468-2 must be transparent or substantially colorless. The material should have minimal internal scattering to provide accurate transmittance values.

The standard works best with materials that have:

  • Uniform thickness throughout the test area
  • Planar surfaces without significant warping
  • Limited surface defects that might scatter light
  • No fluorescent additives (materials containing fluorescent compounds cannot be tested)

Sample preparation typically requires clean, dust-free specimens with minimal surface scratches or imperfections. Your samples should be properly conditioned according to relevant standards before testing.

Industries Utilizing This Standard

The automotive industry relies on ISO 13468-2 when developing and testing transparent plastics for headlamp covers, windows, and displays. Light transmission properties directly impact safety and functionality.

Building and construction sectors use this standard to evaluate glazing materials, skylights, and transparent building elements. The optical clarity and light transmission are critical for energy efficiency.

Electronics manufacturers apply these tests to screen protectors, display covers, and optical components. You’ll find this standard referenced in specifications for:

  • Consumer electronics
  • Medical device displays
  • Optical instruments
  • Lighting fixtures
  • Photovoltaic panel covers

Packaging industries also utilize this standard when developing transparent films and containers that require specific light transmission properties.

Implementation and Best Practices

A scientist in a laboratory using a dual-beam spectrophotometer to test transparent plastic samples for light transmission, with technical equipment and charts in the background.

Proper implementation of ISO 13468-2 requires attention to sample preparation, environmental factors, and careful technique to ensure reliable results when measuring total luminous transmittance of transparent plastics.

Optimizing Sample Preparation

Sample preparation is critical for accurate measurements. Clean your specimens thoroughly with a lint-free cloth to remove any dust, fingerprints, or contaminants that could affect light transmission.

When cutting samples, avoid creating stress marks or scratches that might scatter light. A sharp cutting tool is essential to create clean edges.

For best results, samples should have parallel surfaces and uniform thickness. Ideally, prepare specimens between 1 mm and 10 mm thick, though thicker samples can be measured if your instrument allows.

Let specimens acclimate to the testing environment for at least 2 hours before testing to avoid temperature-related distortions.

Environmental Considerations

Temperature and humidity can significantly impact test results. Maintain a controlled laboratory environment of 23°C ± 2°C and 50% ± 5% relative humidity as specified in ISO 291.

Shield the testing area from direct sunlight and other bright light sources that might interfere with measurements.

Vibration can affect instrument stability, so place your spectrophotometer on a vibration-free surface.

Dust particles can scatter light and alter readings. Regularly clean the instrument and testing area to minimize contamination.

Keep the laboratory free from airborne contaminants that might settle on samples during testing.

Ensuring Accuracy and Repeatability

Calibrate your double-beam spectrophotometer regularly using certified reference materials. This ensures your baseline measurements remain consistent over time.

Take multiple readings at different points on each specimen to account for any material inconsistencies. A minimum of three measurements is recommended.

Position samples consistently in the instrument holder for each test. Even slight variations in placement can affect results.

Keep detailed records of all testing parameters including:

  • Sample thickness
  • Environmental conditions
  • Instrument settings
  • Calibration dates

Compare your results with those from ISO 13468-1 (single-beam method) periodically as a cross-check. Significant differences might indicate instrument issues.

Interpreting and Applying Test Results

A scientist in a laboratory using a dual-beam spectrophotometer to test the transparency of a plastic sample.

The data collected from ISO 13468-2 testing provides valuable insights into material performance and quality. Proper interpretation of these results is essential for making informed decisions about material selection and product development.

Understanding Result Significance

Total luminous transmittance values obtained through ISO 13468-2 testing directly reflect how much visible light passes through the plastic material. Higher percentages indicate greater transparency, typically desirable for applications requiring optical clarity.

When interpreting results, consider the specific application requirements. For example, a 92% transmittance might be excellent for packaging but insufficient for precision optical components.

Test variability should be accounted for when analyzing results. Factors like specimen thickness, surface quality, and internal haze can influence measurements. Specimens thicker than 10mm can be measured but may not produce results comparable to standard thickness samples.

Remember that this test method applies specifically to transparent or substantially colorless plastics. Even faintly tinted materials can be evaluated, but heavily colored or fluorescent plastics require different testing approaches.

Case Study: Real-World Example

A manufacturer of display covers for electronic devices used ISO 13468-2 testing to compare three polycarbonate formulations. The results showed:

Material Espesor Total Luminous Transmittance
Formula A 2.0mm 89.5%
Formula B 2.0mm 91.2%
Formula C 2.0mm 90.3%

Formula B was selected for production despite its higher cost because the 1.7% improvement in light transmission significantly enhanced display brightness and readability.

The company also established a quality control threshold of 90% minimum transmittance. This benchmark ensured consistent optical performance across production batches. Any material falling below this threshold was rejected or relegated to non-display applications.

Implications for Product Design

Your product design can benefit greatly from understanding total luminous transmittance properties. Higher transmittance values generally correlate with better optical clarity and aesthetics in transparent applications.

Consider establishing minimum transmittance specifications based on your specific product requirements. Medical devices might require 92%+ transmittance, while general consumer goods might accept 85%+.

Material aging can affect transmittance over time. You should test aged samples to predict long-term performance, especially for outdoor applications where UV exposure occurs.

Remember that transmittance is just one property. Balance it with other material characteristics like impact resistance, chemical resistance, and processability when making final material selections.

Double-beam testing per ISO 13468-2 typically provides more accurate results than single-beam methods, particularly for quality-critical applications where precise measurements matter.

Comparison with Related Standards and Methods

A laboratory scene showing scientific equipment testing the light transmission of plastic samples with beams of light passing through transparent sheets.

Understanding how ISO 13468-2 relates to other testing standards helps laboratories select the most appropriate method for their specific application. Different standards offer various advantages depending on the material being tested and the required precision.

Comparison with ASTM Test Methods

ISO 13468-2 shares similarities with ASTM D1003, which measures haze and luminous transmittance of transparent plastics. However, ASTM D1003 uses a different light source and detection system than ISO 13468-2.

While ISO 13468-2 specifically uses a double-beam spectrophotometer, ASTM D1003 can utilize either a hazemeter or spectrophotometer.

Another related standard is ASTM E903, which measures solar transmittance and reflectance. This differs from ISO 13468-2 as it focuses on solar radiation rather than just visible light.

Key Differences:

  • ISO 13468-2: Double-beam instrument, visible light range
  • ASTM D1003: Can use single-beam, measures haze and transmittance
  • ISO 13468-1: Single-beam instrument alternative

Advantages and Limitations

The double-beam system in ISO 13468-2 offers significant advantages over single-beam methods. It measures sample and reference simultaneously, minimizing errors from light source fluctuations.

Advantages:

  • Higher precision for transparent materials
  • Better compensation for instrument drift
  • More accurate for slightly tinted materials
  • Reduced influence of environmental factors

Limitations:

  • Cannot be used for fluorescent materials
  • Specimens thicker than 10mm may produce results that aren’t comparable with standard samples
  • More complex equipment than single-beam methods
  • Potentially higher cost of implementation

You should consider these factors when determining if this standard meets your testing requirements.

Selecting the Appropriate Standard

Your choice between ISO 13468-2 and alternatives should depend on your specific testing needs and available equipment.

Choose ISO 13468-2 when:

  • You need high precision measurements
  • Testing transparent or slightly tinted plastics
  • You have access to a double-beam spectrophotometer
  • Sample thickness is within recommended range (typically ≤10mm)

Select ISO 13468-1 (single-beam alternative) when:

  • Lower precision is acceptable
  • Equipment budget is limited
  • Simplicity of operation is preferred

For materials with significant haze or diffusion properties, ASTM D1003 may be more appropriate as it specifically addresses these characteristics.

Remember that test results between different standards aren’t directly comparable, so consistency in method selection is important for benchmarking purposes.

Frequently Asked Questions

The ISO 13468-2 standard provides crucial guidelines for measuring total luminous transmittance in plastic materials using a dual-beam method. This testing protocol helps manufacturers ensure product quality and performance in various applications.

What is the purpose of the ISO 13468-2 standard in evaluating the total luminous transmittance of plastics?

ISO 13468-2 specifically measures how much light passes through plastic materials using a dual-beam method. This approach allows for precise quantification of a plastic sample’s ability to transmit light.

The standard helps manufacturers determine optical clarity and transparency, which are critical properties for many plastic applications. Products like display screens, window materials, and optical lenses rely on this data to meet performance specifications.

The dual-beam approach provides more accurate results by comparing the sample measurement to a reference beam simultaneously, eliminating many variables that could affect single-beam measurements.

How does the ISO 13468-2 test contribute to quality assurance in industries that utilize plastics?

This test method establishes a consistent way to verify optical properties across production batches. By regularly testing samples, manufacturers can quickly identify deviations in transparency that might indicate process problems.

The quantitative data from ISO 13468-2 testing creates objective pass/fail criteria for product acceptance. This eliminates subjective visual assessments and provides legal documentation of compliance with specifications.

For industries like automotive, electronics, and medical devices, the test confirms materials meet strict transparency requirements for safety and functionality.

Can you elaborate on the types of materials that are typically subject to ISO 13468-2 testing?

Clear or translucent thermoplastics like polycarbonate, acrylic, and PETG are commonly tested with this method. These materials are frequently used in applications where light transmission is essential.

Film products, including packaging materials and protective coverings, undergo ISO 13468-2 testing to ensure consistent optical properties. The test works well for thin materials that require precise optical characterization.

Specialty plastics used in optical components, lighting fixtures, and display technologies also rely on this testing standard. Any plastic where light transmission affects performance can benefit from this evaluation.

Why is the ISO 13468-2 standard considered a critical component in the production and assessment of transparent or translucent plastics?

The standard provides a globally recognized method that ensures consistency across manufacturers and countries. This facilitates international trade and collaboration in plastic production.

ISO 13468-2 testing detects subtle variations in light transmission that might be missed by visual inspection. These variations can significantly impact product performance in critical applications.

The test results help engineers predict how materials will perform in real-world lighting conditions. This predictive capability is essential for designing products with specific optical requirements.

What are the core principles that the ISO 13468-2 test is based on, and why are these principles important?

The dual-beam principle compares light passing through the sample to a reference beam simultaneously. This approach compensates for fluctuations in light source intensity and environmental conditions.

Spectral measurement across visible wavelengths (approximately 380-780nm) ensures comprehensive evaluation of transparency. This range matches human visual perception, making results relevant for applications where visual clarity matters.

The test uses precisely calibrated equipment to ensure reproducibility and accuracy. Standardized testing conditions allow for meaningful comparisons between different materials or production batches.

How do the results of the ISO 13468-2 test impact the development and application of plastic materials in various industries?

Test results guide material selection decisions for specific applications based on quantifiable optical properties. Designers can choose materials with confidence knowing exactly how they will perform optically.

Product development teams use transmittance data to refine formulations and processing methods. Small adjustments to additives or processing temperatures can significantly impact transparency.

Compliance with customer specifications often depends on meeting specific transmittance values. ISO 13468-2 test reports provide documentation for quality certification and customer acceptance.

Sobre INDUSTRIA DE PRODUCTOS QUALTECH Ciencia e Investigación

What you can read next

ISO 13468-1: Plastics – Determination of the Total Luminous Transmittance of Transparent Materials: Understanding Key Applications and Industry Significance
DIN EN 12047 Solid Fertilizers – Measurement of Static Angle of Repose: Essential Test for Quality Control and Material Handling in Fertilizer Production
ASTM C1444-00 Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders: Applications and Industry Significance in Materials Testing

OBTENGA UNA CUOTA GRATIS

Contáctenos – Nos gustaría saber de usted

Obtenga información ahora sobre productos, soporte técnico, servicio al cliente, ventas, relaciones públicas, servicios profesionales y socios. También puede proporcionar comentarios en nuestro sitio web.
Por favor complete este formulario. Uno de nuestros especialistas responderá a su consulta en breve. Alternativamente, contáctenos a través de los detalles de la compañía en los EE. UU., en Australia o en el Reino Unido.

    Tenga en cuenta que respetamos su privacidad y mantenemos sus datos estrictamente confidenciales.

    ASTM
    ANSI
    bsi
    CEI
    AATCC
    TÜV
    YO ASI
    ESTRUENDO

    © 1978 - 2025 INDUSTRIA DE PRODUCTOS QUALTECH Términos de Uso Términos y condiciones Galletas Contáctenos

    SUBIR
    Este sitio web utiliza cookies para mejorar su experiencia, sin embargo, respetamos su privacidad y las cookies solo recopilan datos anónimos. Respetamos su privacidad y puede optar por no participar si lo desea.
    Configuración de cookiesAceptar todo
    Gestionar el consentimiento

    Descripción general de privacidad

    Este sitio web utiliza cookies para mejorar su experiencia mientras navega por el sitio web. De ellas, las cookies que se clasifican como necesarias se almacenan en su navegador, ya que son esenciales para el funcionamiento de las funciones básicas del sitio web. También utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador sólo con su consentimiento. También tiene la opción de optar por no recibir estas cookies. Pero optar por no recibir algunas de estas cookies puede afectar su experiencia de navegación.
    Necesario
    Siempre activado
    Las cookies necesarias son absolutamente esenciales para que el sitio web funcione correctamente. Estas cookies garantizan funcionalidades básicas y características de seguridad del sitio web, de forma anónima.
    GalletaDuraciónDescripción
    cookielawinfo-checkbox-análisis11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. La cookie se utiliza para almacenar el consentimiento del usuario para las cookies en la categoría "Análisis".
    cookielawinfo-casilla-funcional11 mesesLa cookie se establece mediante el consentimiento de cookies del RGPD para registrar el consentimiento del usuario para las cookies en la categoría "Funcional".
    cookielawinfo-casilla-necesaria11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. Las cookies se utilizan para almacenar el consentimiento del usuario para las cookies en la categoría "Necesarias".
    cookielawinfo-checkbox-otros11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. La cookie se utiliza para almacenar el consentimiento del usuario para las cookies en la categoría "Otros".
    cookielawinfo-casilla-rendimiento11 mesesEsta cookie la establece el complemento de consentimiento de cookies del RGPD. La cookie se utiliza para almacenar el consentimiento del usuario para las cookies en la categoría "Rendimiento".
    política_de_cookies_vista11 mesesLa cookie la establece el complemento GDPR Cookie Consent y se utiliza para almacenar si el usuario ha dado su consentimiento o no para el uso de cookies. No almacena ningún dato personal.
    Funcional
    Las cookies funcionales ayudan a realizar ciertas funcionalidades, como compartir el contenido del sitio web en plataformas de redes sociales, recopilar comentarios y otras funciones de terceros.
    Actuación
    Las cookies de rendimiento se utilizan para comprender y analizar los índices clave de rendimiento del sitio web, lo que ayuda a ofrecer una mejor experiencia de usuario a los visitantes.
    Analítica
    Las cookies analíticas se utilizan para comprender cómo interactúan los visitantes con el sitio web. Estas cookies ayudan a proporcionar información sobre métricas: número de visitantes, tasa de rebote, fuente de tráfico, etc.
    Anuncio
    Las cookies publicitarias se utilizan para proporcionar a los visitantes anuncios y campañas de marketing relevantes. Estas cookies rastrean a los visitantes en los sitios web y recopilan información para proporcionar anuncios personalizados.
    Otros
    Otras cookies no categorizadas son aquellas que están siendo analizadas y aún no han sido clasificadas en ninguna categoría.
    GUARDAR Y ACEPTAR
    es_ESEspañol
    en_USEnglish da_DKDansk de_DEDeutsch elΕλληνικά es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês es_ESEspañol
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português