QUALTECH PRODUKTINDUSTRIE

QUALTECH PRODUKTINDUSTRIE

Echte Werte für unsere Kunden & Klienten

USA: +1 720 897 7818
Großbritannien: +44 161 408 5668
DE: +61 2 8091 0618

E-Mail [email protected]

QUALTECH PRODUKTINDUSTRIE
2186 South Holly Street, Denver, Colorado 80222, USA

In GoogleMaps öffnen
  • Herzlich willkommen
  • Instrumente
    • Viskositätsmessung
      • Fließbecher
        • ISO-Auslaufbecher ASTM D5125 ISO 2431 DIN 53224 BS EN 535
        • Ford Cups ASTM D333 ASTM D365 ASTM D1200 ISO 2431
        • Zahnbecher ASTM D1084 ASTM D4212 BS EN 535
        • Japanischer IWATA-Cup
        • DIN Becher DIN 53211
        • Druckbecher ISO 2811-4 BS 3900-A22
        • Ständer & Halter für Viskositäts-Auslaufbecher
      • Rotationsviskosimeter
        • Handviskosimeter
        • Tragbares Viskosimeter
        • Digitales Rotationsviskosimeter
        • Spindelviskosimeter mit Touchscreen
        • Krebs-Stormer-Viskosimeter
        • Hochtemperatur-Viskosimeter
        • Kegel-Platten-Viskosimeter
        • Viskositätsbad
        • Laray-Viskosimeter
        • Mehl- und Stärkeviskosimeter
    • Aussehensprüfung
      • Glanz
        • Glanzmesser
        • Glanzmessgerät mit Mikroobjektiv
        • Haze-Glanzmesser
        • Glanzmesser 45° Winkel
        • Glanzmesser 75° Winkel
        • Taschen-Glanzmesser
        • Glanzmessgerät mit Touchscreen
        • Farbleser und Glanzmesser
        • Inline-Glanzmesser
        • Mini-Glanzmesser
      • Transparenz Dunst Klarheit
        • Trübungsmesser
        • Tragbares Trübungsmessgerät
        • Desktop-Trübungsmessgerät
      • Farbe
        • Handheld-Farblesegerät
        • Tragbares Farblesegerät
        • Benchtop-Farblesegerät
        • Handheld-Spektralfotometer
        • Desktop-Spektralfotometer
        • Kabinett zur Farbbewertung
        • Farbprüfstation
        • Gardner Farbkomparator
        • Lovibond Tintometer
        • RAL-Farbkarten
        • Pantone-Farbkarten
        • Handheld-Farblesegerät für Flüssigkeiten
        • Handkolorimeter für Pulver
        • Handkolorimeter für Pharmazeutika
        • Farbanpassungssoftware
      • Weiße
        • Handheld-Weißgradmessgerät
        • Tragbares Weißgradmessgerät
        • ISO-Desktop-Weißgradmessgerät
        • CIE D65 Weißgradmessgerät
        • Porositätsmessgerät
      • Dicke
        • Nassschichtdickenmessgeräte
        • Rad-Nassfilmdickenmessgerät
        • Schichtdickenmessgerät
        • Ultraschall-Dickenmessgerät
        • Lackinspektionslehre
        • Dickenmessgerät für Bananen
        • Bremssattel
        • Blechdickenmesser
      • Reflexionsopazität
        • Reflexionsmesser
        • Handmessgerät für spektrale Reflexion
        • Desktop-Reflexionsmessgerät
        • Digitales Kryptometer
        • Infrarot-Reflexionsmessgerät
        • Lichtdurchlässigkeitsmesser
        • Lichtdurchlässigkeitsmesser für Glas und Linsen
        • Lichtdurchlässigkeitsmesser 365 nm & 550 nm & 850 nm & 940 nm
        • UV-Lichtdurchlässigkeitsmesser
        • IR-Lichtdurchlässigkeitsmesser
        • Blaulichtdurchlässigkeitsmesser
        • Einwinkel-Retroreflektometer
        • Mehrwinkel-Retroreflektometer
    • Anwendungsserie
      • Tauchbeschichter
      • Automatischer Vakuum-Filmapplikator
      • Automatischer Filmaufzieher mit Filmaufbringtisch aus Edelstahl und Glas
      • Nivellierungstester
      • SAG-Tester
      • Filmapplikatoren
      • Beschichter für Drahtstangen
      • Lackierpistole
      • Spin-Coater
      • Vakuumtisch für Folienauftrag
      • Drawdown-Oberfläche
      • Schachbrettdiagramme
      • Stickstoff-Tauchbeschichter
      • Mehrschichtiger Tauchlackierer
      • Tauchbeschichter mit konstanter Temperatur
      • Rollenführung für Cube Film Applicator
      • Automatische Substratsprühkammer
      • Wasserwaschkabine
    • Feuchtigkeitsmessung
      • Karl-Fischer-Titrator
      • Coulometrischer Karl-Fischer-Titrator
      • Digitales Feuchtigkeitsmessgerät
      • Feuchtigkeitsanalysator
      • Rotationsverdampfer
    • Prüfung der physikalischen Eigenschaften
      • Mahlgrad
        • Feinheit der Mahlgradmesser
        • Elektrische Mahlgradmessgeräte
      • Trockenzeit
        • Trocknungszeitschreiber
        • Automatischer Trocknungszeitrekorder
        • Durchtrockenzustandstester
      • Dichte
        • Dichte Cups
        • Gas-Pyknometer
        • Handheld-Dichtemessgerät
        • Labor-Dichtemessgerät
        • Handheld-Densitometer
        • Transmissionsdensitometer
        • Optisches Transmissionsdensitometer
        • Auftriebsdichtemessgerät
        • Scott Volumeter
        • Hallendurchflussmesser
        • Carney-Durchflussmesser
        • Schüttdichtemessgerät ASTM D1895 Methode A
        • Schüttdichtemessgerät ASTM D1895 Methode B
        • Schüttdichtemessgerät ISO R60
        • Schüttdichtemessgerät
        • Volumeter der scheinbaren Dichte
        • Tippen Sie auf Dichtemesser
        • Pulver Ruhewinkel
        • Tester für Pulvereigenschaften
        • Automatisches Filtersauberkeitsanalysesystem
        • Automatisches Echtdichte-Pyknometer
        • Gustavsson-Durchflussmesser
        • Arnold Dichtemessgerät
        • Schüttdichtemessgerät ISO-Methode R60
        • Schüttdichtemessgerät ASTM D1895 Methode A
        • Schüttdichtemessgerät ASTM D1895 Methode B
        • Schüttdichtemessgerät ASTM D1895 Methode C
        • Automatisches Dichtemessgerät für Flüssigkeiten
        • Dichtemessgerät für Flüssigkeiten
        • Akustik-Komfortschrank
      • Leitfähigkeit & pH
        • Taschen-pH-Meter
        • Handliches pH-Meter
        • Tragbares pH-Meter
        • Desktop-pH-Meter
        • Tragbares Leitfähigkeitsmessgerät
        • Tragbares Leitfähigkeitsmessgerät
        • Desktop-Leitfähigkeits- und pH-Messgerät
        • PH-Elektrode
        • Ionenselektive Elektrode
        • Elektrode für gelösten Sauerstoff
        • Referenzelektrode
        • Leitfähigkeitselektrode
        • Metallelektrode
        • Temperaturelektrode
      • Brechung
        • Handrefraktometer
        • Tragbares digitales Refraktometer
        • Automatisches digitales Refraktometer
        • Digitales Refraktometer
        • Analoges Refraktometer
      • Rauheit
        • Oberflächenrauheitsmesser
      • Temperatur Feuchtigkeit
        • MFFT-Leiste mit Touchscreen
        • Feuchtigkeitsmesser
        • Laborthermometer
        • Infrarot Thermometer
        • Flammpunktprüfgerät mit geschlossenem Tiegel
        • Flammpunkttester für niedrige Temperaturen im geschlossenen Tiegel
        • Automatischer Flammpunkttester mit geschlossenem Tiegel
        • Abel-Flammpunkttester
        • Flammpunkttester mit offenem Tiegel
        • Tieftemperatur-Flammpunkttester mit offenem Tiegel
        • Erweichungspunkt-Tester
        • Schmelzpunktapparat
        • Schmelzpunkttester mit Videoaufzeichnung
        • Schmelzpunkttester
        • Mikroskop-Schmelzpunkttester
        • Thermisch-optischer Analysator
        • Hitzebeständigkeitstester
      • Spannungsmessung
        • Oberflächenspannungsmesser Du Noüy Ring
        • Oberflächenspannungsmessgerät Wilhelmy-Platte
      • Partikelgrößenmessung
        • Partikelgrößenanalysator
        • Labor-Siebschüttler
    • Prüfung der mechanischen Eigenschaften
      • Flexibilitäts- und Verformungsprüfgeräte
        • T-Biege-Tester
        • Biegeprüfgerät für zylindrische Dorne
        • Konischer Dornbiegeprüfer
        • Schröpfen Tester
        • Ball Punch-Tester
        • Kompressionstester
        • Edge-Crush-Tester
        • Papier-Berstfestigkeitstester
        • Karton-Berstfestigkeitstester
        • Berstfestigkeitsprüfgerät für Textilien
        • Box Kompressionstester
        • Roll-Crush-Tester
        • Lackfilm-Flexibilitätstester
        • Beispielsubstrate für den Kitt-Flexibilitätstester
        • Automatischer Flaschenverschluss-Drehmomentprüfer
      • Schlagprüfgeräte
        • Schlagtester von DuPont
        • Schwerlast-Schlagtester
        • Universal-Schlagtester
        • Falling Dart Impact Tester
        • Schlagprüfgerät für Holzplatten
      • Haftprüfgeräte
        • Adhäsion Cross Cut Tester
        • Einzelklingen-Haftungs-Gitterschnitt-Tester
        • Adhäsion Cross Cut Ruler Test Kit
        • Adhäsion X Cut Testkit
        • Automatisches Lackhaftungs-Gitterschnitt-Prüfgerät
        • Vollautomatischer Haftfestigkeitstester
        • Automatischer Pull-Off-Adhäsionstester
        • Peel Adhesion Tester
        • COF-Koeffizienten-Reibungstester
        • Schältester für Klebstoffe
        • Loop-Tack-Tester
        • Haftschältester
      • Härteprüfgeräte
        • Bleistift-Härteprüfer
        • Desktop-Bleistift-Härteprüfgerät
        • Motorisierter Bleistift-Härteprüfer
        • Dur-O-Test Härtestift
        • Pendelhärteprüfer
        • Automatischer Kratztester
        • Automatischer Mar-Tester
        • Kratzwerkzeug
        • Leeb Rückprallhärteprüfer
        • Tragbares Leeb-Härteprüfgerät
        • Handhärteprüfer
        • Digitaler Taschenhärteprüfer
        • Tragbares Rockwell- und Brinell-Härteprüfgerät
        • Tragbares Rockwell-Härteprüfgerät
        • Brinell-Härteprüfgerät für kleine Lasten
        • Brinell-Härteprüfer mit Touchscreen
        • Brinell-Härteprüfgerät
        • Multi-Härteprüfer
        • Rockwell-Härteprüfgerät mit Touchscreen
        • Rockwell-Härteprüfgerät
        • Rockwell Oberflächenhärteprüfer
        • Rockwell-Härteprüfgerät für große Proben
        • Rockwell Kunststoff-Härteprüfer
        • Vickers-Härteprüfgerät
        • Kleinlast-Vickers-Härteprüfgerät
        • Knoop-Härteprüfgerät
        • Mikro-Härteprüfer mit Touchscreen
        • Mikro-Härteprüfer
        • Buchholz Eindruckprüfgerät
      • Abriebprüfgeräte
        • Nassabrieb-Scheuertester
        • Erweiterter Nassabrieb-Scheuertester
        • Rotationsabriebtester mit einer Plattform
        • Rotationsabriebtester mit zwei Plattformen
        • Linearer Abriebtester
        • Manuelles Crockmeter
        • Elektrisches Crockmeter
        • Elektrisches Rotations-Crockmeter
        • Rotations-Crockmeter
        • Crockmeter aus Leder
        • Gakushin-Crockmeter
        • Martindale Abrieb- und Pilling-Tester
        • Wyzenbeek OszillationszylinderTester
        • Cinch-Abriebtester
        • Abriebtester für fallenden Sand
        • 9-stufige chromatische Übertragungsskala AATCC
        • AATCC-Graustufen-Farbtestkarten
        • Erweiterter Abriebtester
      • Zugprüfsysteme
        • Einsäulen-Zugmaschine
        • Zweisäulen-Zugmaschine
      • Sprödigkeitsprüfsysteme
        • Sprödigkeitstestsystem
        • Sprödigkeitstester
      • Farbechtheits-Waschtest
        • Farbechtheit gegenüber Waschtester
    • Klimaprüfgeräte
      • Bewitterungsprüfgeräte
        • Desktop-UV-Bewitterungsprüfkammer
        • UV-Licht-Bewitterungsprüfkammer
        • Xenon-Bewitterungsprüfkammer
        • Xenon-Testkammer mit Wasserfiltersystem
        • Xenon-Lichtbogen-Bewitterungsprüfkammer
      • Korrosionskontrolle
        • Salzsprühkammer
        • Salznebelprüfkammer
        • Fortschrittliche Salzsprühtestkammer
      • Temperatur und Luftfeuchtigkeit
        • Laborofen
        • Explosionsgeschützter Laborofen
        • Muffelofenofen
        • Labor-Vakuumofen
        • Vertikale Lichtkammer
        • Niedertemperaturbad
        • Laborwasserbad
        • Laborölbad
        • Klimaprüfkammer
        • Trockenbad-Inkubator
      • UV-Härtung
        • UV-Härtungsgeräte
        • UV-Licht-Radiometer
    • Mischdispersion Mahlen
      • Elektrischer Labormischer
      • Elektrischer Laborrührer
      • Automatischer Labormischer mit Timer
      • Labor-Hochgeschwindigkeits-Dispergierer
      • Labor-Allzweck-Dispergierer
      • Labor-Dispergierer mit Timer
      • Automatischer Labor-Dispergierer mit Timer und Temperaturmessung
      • Explosionsgeschützter Dispergierer und Mischer mit hoher Scherkraft für das Labor
      • Labor Korbmühle
      • Farbdosen-Shaker mit zwei Armen
      • Automatischer Farbrüttler
      • Pneumatischer Farbrüttler
      • Farbspender
      • Automatischer Farbspender
      • Automatischer Orbitalschüttler
      • Labor-Plattenschüttler
      • Großer Orbitalschüttler
      • Labor-Vakuumdispergierer
      • Fortschrittlicher Vakuumdispergierer
      • Automatische Pulvermühle
      • Desktop-Pulvermühle
      • Dreiwalzwerk
      • Müller Mühle
      • Horizontale Laborsandmühle
      • Pneumatischer Labormischer
      • Pneumatischer Mischer mit Lift
      • Nano-Mixer
      • Labor-Vakuum-Hochgeschwindigkeits-Dispergierer
      • Labor-Emulgator
      • Labor-V-Mixer
    • Prüfung der Druckfarbeneigenschaften
      • MEK Lösungsmittel-Reibungs-Abriebtester
      • Fortschrittlicher MEK-Lösungsmittel-Abriebtester
      • Ink-Proofing-Presse
      • Druckfarben-Proofer
    • Labortestinstrumente
      • Laborwaagen
      • Laborwaagen mit Farb-Touchscreen
      • Schopper-Riegler-Tester
      • Hydraulischer Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • Tropfpunkttester
      • Tropfpunkttester ASTM D2265
      • Automatischer Tropfpunkttester ASTM D2265
      • Tischwaage
      • Plattformwaagen
      • Tester für Gasdurchlässigkeit
      • Tester für Wasserdampfdurchlässigkeit
    • Wissenschaftliche Probenvorbereitung
      • Wissenschaftliche Textilprobenvorbereitung
        • GSM-Probenschneider
    • Textile Prüfgeräte
      • MIE Abriebtester
      • Universelles Verschleißtestgerät
    • Umweltprüfinstrumente
      • Tragbares Luftqualitätsmessgerät
      • Umgebungsluftprobenehmer
    • Prüfinstrumente aus Kunststoff
      • Charpy-Izod-Schlagtester
      • Charpy-Schlagtester
      • Izod-Schlagtester
      • Schmelzflussindex-Tester
    • Papierprüfgeräte
      • Schopper-Riegler-Tester
      • Hydraulischer Schopper Riegler Tester
      • Digital Schopper Riegler Tester
      • Canadian Standard Freeness Tester
      • ISO 534 Messschieber
      • Automatisches Papierdickenmessgerät nach ISO 534
      • Papier-Berstfestigkeitstester
      • Karton-Berstfestigkeitstester
    • Betonprüfgeräte
      • Beton-Rückprallhammer
      • Digitaler Beton-Rückprallhammer
  • Ausrüstung
    • Dispergierer für die industrielle Produktion
      • Industrieller Dispergierer
      • Industrieller Doppelwellen-Dispergierer
      • Industrieller Mehrwellen-Dispergierer
      • Industrieller Vakuum-Dispergierer
      • Hochviskoser Dispergierer
      • Dispergierer im Tank
      • Druckbeaufschlagter In-Tank-Dispergierer
      • Vakuum-In-Tank-Dispergierer
      • Dispersionsklingen
    • Mischer und Rührwerke für die industrielle Produktion
      • In-Tank-Mischer
    • Mixer für die industrielle Produktion
      • V-Mixer
      • Doppelkegel-Mixer
    • Industrielle Produktionsmühlen und -mühlen
      • Industrielle Korbmühle
      • Dreiwalzwerk
  • Chemikalien
  • Kontaktiere uns
  • Über uns
FREIZITIEREN
  • Heim
  • Science & Research
  • CIE 15.2 CIE Defines Photometric Quantities: Essential Guidance for Accurate Haze and Transmission Testing

CIE 15.2 CIE Defines Photometric Quantities: Essential Guidance for Accurate Haze and Transmission Testing

CIE 15.2 CIE Defines Photometric Quantities: Essential Guidance for Accurate Haze and Transmission Testing

von QUALTECH PRODUCTS INDUSTRY Science & Research / Sonntag, 22 Juni 2025 / Veröffentlicht in Science & Research

Have you ever wondered how we measure light and its interaction with materials? CIE 15.2, developed by the International Commission on Illumination (CIE), is a fundamental standard that defines photometric quantities using the V(λ) weighting function. This standard is essential for accurately measuring how materials transmit or scatter light, providing the foundation for haze and transmission tests used across multiple industries.

A laboratory scene showing light beams passing through a hazy medium with optical instruments measuring light transmission and scattering.

When you look through a foggy window or examine the clarity of packaging materials, you’re observing properties that can be precisely measured using principles from CIE 15.2. The standard defines how human visual perception relates to physical measurements of light, establishing the mathematical framework for quantifying transparency, translucency, and haziness. These measurements help manufacturers ensure product quality and consistency in industries ranging from automotive and architecture to packaging and optical materials.

Key Takeaways

  • CIE 15.2 establishes the V(λ) weighting function that matches light measurements to human visual perception.
  • The standard provides the foundation for haze and transmission tests used to evaluate material clarity and light-scattering properties.
  • Proper application of CIE 15.2 principles ensures consistent quality control for transparent and translucent materials across industries.

Purpose and Scope of CIE 15.2

A scientific setup showing a light beam passing through a hazy material with graphical overlays representing photometric measurements and light transmission.

CIE 15.2 is a foundational document published by the International Commission on Illumination that defines standard methods for colorimetry. This technical report establishes the framework for measuring and quantifying color in a scientifically consistent way.

The primary purpose of CIE 15.2 is to provide standardized procedures for color measurement that ensure results are comparable across different laboratories and equipment. It defines important photometric quantities using the V(λ) weighting function, which models the human eye’s sensitivity to different wavelengths of light.

In testing applications, CIE 15.2 is particularly valuable for haze and transmission measurements. These tests help you determine how much light passes through materials and how it scatters.

Key components of CIE 15.2 include:

  • Definitions of standard illuminants (light sources)
  • Standard colorimetric observers (1931 and 1964)
  • Calculation methods for tristimulus values
  • Chromaticity coordinates for various illuminants

When you need to evaluate transparent or translucent materials, CIE 15.2 provides the mathematical foundation for meaningful measurements. This applies to plastics, glass, films, and coatings.

The document serves as a reference for many ASTM test methods that require standardized color and light transmission evaluations. By following these standards, you can achieve reliable and reproducible test results when measuring optical properties.

Photometric Quantities Defined by CIE 15.2

A laboratory scene showing optical instruments and a colorful curve representing light sensitivity across visible wavelengths, with a light beam passing through a semi-transparent medium illustrating haze and transmission effects.

The CIE 15.2 standard establishes key photometric quantities used in optical measurements including haze and transmission tests. These definitions standardize how light is measured in relation to human visual perception.

V(λ) Weighting and Human Visual Response

V(λ) weighting represents how the human eye responds to different wavelengths of light. This function peaks at 555 nm (green-yellow light) where our eyes are most sensitive. At this peak wavelength, 1 watt of radiant power equals 683 lumens of luminous flux.

The human eye’s sensitivity drops significantly toward both blue and red ends of the spectrum. This natural response curve must be accounted for in optical measurements.

When you perform haze or transmission tests, the V(λ) function helps convert radiometric quantities (physical light measurements) into photometric quantities (how humans perceive light). This ensures test results correlate with visual perception.

Without V(λ) weighting, measurements would fail to represent how materials appear to human observers.

Key Photometric Parameters

Luminous flux (measured in lumens) represents the total light output weighted by the V(λ) function. This differs from radiant flux, which measures total energy without considering visual response.

Illuminance (measured in lux) indicates how much light falls on a surface. This parameter is crucial in transmission testing to ensure consistent test conditions.

Luminance (measured in candelas per square meter) measures the brightness of a surface as perceived by human observers. This is particularly important in haze evaluation.

Transmittance represents the ratio of transmitted to incident light, weighted by V(λ). When measuring material clarity, this provides results that match human visual assessment.

You should use these photometric quantities when evaluating material appearance properties like clarity, haze, and light transmission.

Specific Use in Haze and Transmission Tests

A laboratory setup showing light passing through a transparent glass panel with visual effects illustrating light scattering and transmission.

The CIE 15.2 standard provides essential photometric definitions that form the foundation for accurate optical measurements in materials testing. These definitions are particularly relevant when evaluating the transparency and light-scattering properties of materials.

Application in ASTM Haze Methods

ASTM haze test methods like D1003 rely on CIE 15.2’s standardized photometric quantities to ensure consistent measurements. When you perform these tests, you’re measuring the percentage of transmitted light that deviates from the incident beam by more than 2.5 degrees.

The V(λ) weighting function defined in CIE 15.2 adjusts light measurements to match human visual perception. This means test results reflect how the human eye would perceive haziness, not just raw physical measurements.

Common materials tested include plastics, films, glass, and transparent packaging. The test helps you determine:

  • Total transmittance: Overall light passing through
  • Diffuse transmittance: Scattered light
  • Klarheit: Direct light transmission

Equipment calibration for these tests must reference CIE standard illuminants (typically D65) as specified in the CIE document.

Why CIE 15.2 Is Critical to Test Accuracy

Without CIE 15.2’s photometric definitions, haze and transmission measurements would vary significantly between laboratories and instruments. The standard ensures you get comparable results regardless of testing location or equipment manufacturer.

The V(λ) function specifically addresses the varying sensitivity of human vision across different wavelengths. This weighting is crucial because it transforms physical light measurements into perceptually relevant values.

Key benefits of applying CIE 15.2 include:

  • Standardized illuminants that represent real-world lighting conditions
  • Consistent calculation methods for color values
  • Clear definitions for luminance and illuminance

When interpreting test results, you can be confident they correlate with actual visual perception of material quality. This makes the data more relevant for product development and quality control.

General Principles Behind the Standard

A laboratory scene showing light passing through a transparent medium with instruments measuring light transmission and scattering.

Das CIE 15 standard establishes fundamental principles for colorimetry that enable accurate measurement and communication of color information across different instruments and laboratories.

Standardization of Light Measurement

CIE 15.2 defines how photometric quantities should be measured using the V(λ) weighting function. This function models the human eye’s sensitivity to different wavelengths of light, peaking at 555 nm (yellow-green region).

For haze and transmission tests, this standardization is crucial because it ensures measurements reflect what humans actually see rather than just physical light quantities.

The standard defines specific illuminants (like Standard Illuminant D65 to represent average daylight) to ensure consistency in testing conditions.

Two standard observers are defined: the CIE 1931 Standard Observer (2° field of view) and the CIE 1964 Supplementary Standard Observer (10° field of view). These are used depending on the viewing angle required for specific applications.

Ensuring Reproducibility and Comparability

The standard specifies exact mathematical formulas and procedures for calculating tristimulus values, chromaticity coordinates, and color differences. This mathematical foundation makes measurements objective and repeatable.

Test geometries are standardized to control how light interacts with materials. This includes specific angles for illumination and viewing during transmission and haze testing.

Calibration procedures ensure different instruments produce comparable results. Without these standards, measurements from different laboratories would be impossible to compare meaningfully.

The standard includes recommendations for illuminating and viewing conditions to minimize variables that could affect test results.

By following CIE 15.2 guidelines, manufacturers can verify product quality across different facilities and ensure compliance with specifications regardless of where testing occurs.

Industries and Materials Relevant to CIE 15.2

A laboratory scene showing scientific instruments measuring light transmission through transparent material samples with a light beam passing through them.

CIE 15.2 defines photometric quantities that are critical for haze and transmission testing across multiple industries. These standards provide consistent methodology for measuring how light interacts with various transparent and translucent materials.

Plastics and Transparent Films

Polymer manufacturers rely on CIE 15.2 standards to evaluate the optical properties of plastic films and sheets. You’ll find these measurements particularly important for packaging materials where clarity impacts consumer perception of contained products.

Clear polycarbonate, polyethylene, and PET films require precise haze measurements to ensure quality control. Medical packaging demands exceptionally transparent materials with quantifiable optical properties.

Food packaging manufacturers use these standards to ensure their materials provide adequate protection while maintaining product visibility. Haze measurements help you determine if a plastic film will appear clear or cloudy to consumers.

Agricultural films also benefit from these measurements, as light transmission directly impacts crop growth in greenhouse applications.

Glass and Architectural Applications

Building and construction industries apply CIE 15.2 standards when evaluating glazing materials. You need accurate light transmission data to determine energy efficiency and visibility characteristics of windows.

Architects specify glass based on these measurements to achieve desired aesthetics and functional performance. Low-E glass requires precise photometric evaluation to balance visible light transmission with thermal insulation properties.

Safety glass manufacturers use these standards to ensure consistent optical quality after lamination or tempering processes. Museum display cases need specialized glass with quantifiable UV filtering properties.

Building energy codes often reference CIE-based measurements to establish minimum performance requirements for daylighting and energy efficiency in commercial structures.

Automotive and Display Industries

Vehicle manufacturers apply CIE 15.2 standards to windshields, windows, and displays. You must ensure driver visibility meets safety requirements through standardized photometric measurements.

Head-up displays (HUDs) depend on precise optical characteristics to project information clearly onto windshields. Automotive interior displays use these standards to maintain readability in various lighting conditions.

Electronic device manufacturers rely on these measurements for screens and protective covers. Mobile phones, tablets, and monitors need consistent optical performance across production batches.

Aircraft manufacturers apply these standards to cockpit windows and displays where clarity directly impacts safety. Medical imaging displays require exceptional optical properties with minimal haze to ensure diagnostic accuracy.

Interpreting Results and Implications

A laboratory scene showing optical equipment measuring light transmission through transparent materials with graphical data plots in the background.

Understanding CIE 15.2 test results requires careful analysis of photometric data. The interpretation directly affects product acceptance and human perception considerations.

Impact on Product Quality and Compliance

Test results from CIE 15.2 serve as critical quality indicators for transparent and translucent materials. When V(λ) weighting is applied to transmission measurements, you can determine if products meet industry specifications for light transmission and haze.

Materials with high haze values may indicate poor manufacturing processes or degradation over time. For automotive glass, results below compliance thresholds can lead to rejection during quality control.

You should compare your test data against historical benchmarks to identify trends or anomalies. Many industries have specific pass/fail criteria:

Industry Typical Transmission Requirement Maximum Haze Allowed
Automotive >70% <2%
Optical displays >90% <0.5%
Architectural >65% <3%

Documentation of results should include both raw data and calculated values to ensure traceability.

Implications for Visual Perception

The V(λ) weighting function in CIE 15.2 correlates closely with human visual perception, making test results relevant to real-world applications.

Products with poor test results often create visual discomfort for users. High haze values can cause:

  • Reduced visibility through materials
  • Distorted color perception
  • Increased eye strain during prolonged use

You should consider how varying lighting conditions might affect perception beyond the standard test environment. A material that performs well under laboratory conditions might still create visibility issues under direct sunlight.

Age-related changes in human vision further complicate interpretation, as older users may be more sensitive to haze. When designing safety-critical applications, you should apply stricter standards than minimum requirements.

User acceptance testing often complements photometric measurements to validate that technical compliance translates to satisfactory visual performance.

Best Practices for Implementation

A laboratory scene showing light beams passing through a transparent glass panel with optical instruments and scientific graphs in the background.

Implementing CIE 15.2 colorimetry standards correctly requires attention to both equipment specifications and environmental conditions. Proper application ensures accurate and reproducible photometric measurements essential for haze and transmission tests.

Standardized Instrumentation

When selecting instruments for CIE 15.2 photometric measurements, you should use spectrophotometers or colorimeters that comply with CIE recommendations. These instruments must accurately incorporate the V(λ) weighting function, which models human eye sensitivity.

Calibrate your equipment regularly using certified reference standards. This helps maintain measurement accuracy over time.

For haze measurements, ensure your instrument can distinguish between diffuse and specular transmission. Most modern spectrophotometers offer specific modes for this purpose.

Verify that your instrument’s geometry matches CIE recommendations (0°/diffuse or 8°/diffuse). This geometry specification affects how light interacts with your sample.

Document all instrument settings in your test reports, including wavelength range, bandwidth, and measurement mode.

Critical Evaluation of Test Conditions

Room conditions significantly impact photometric measurements. Maintain a controlled environment with temperature at 23°C ± 1°C and relative humidity at 50% ± 5%.

Eliminate stray light in your testing area. Even small amounts of ambient light can distort readings, especially for highly transparent samples.

Handle specimens carefully to prevent fingerprints, scratches, or contamination. Use gloves and sample holders designed for optical testing.

Standardize sample preparation techniques. For films and sheets, ensure consistent thickness and surface quality.

Allow samples to equilibrate to room conditions for at least 24 hours before testing. This minimizes measurement variations due to temperature or humidity effects.

Perform measurements in triplicate at different sample locations to account for material variability and ensure representative results.

Comparison With Similar Photometric Standards

Das CIE 15.2 standard provides a foundation for photometric measurements using V(λ) weighting that differs from yet complements other international standards. Several testing organizations have developed their own approaches to measuring light and color properties.

Differences From ASTM and ISO Methods

ASTM methods typically focus on material-specific applications of photometric principles, while CIE 15.2 establishes the fundamental science behind these measurements. For example, ASTM D1003 for haze measurement references CIE’s V(λ) function but adds specific testing geometries and sample preparation guidelines.

ISO standards often adopt CIE fundamentals but expand them for particular industries. ISO 13468 for transmission measurements incorporates CIE’s photometric principles but adds specific procedures for plastic materials.

The key distinction is that CIE 15.2 defines the colorimetric observer functions and illuminant specifications that other standards reference. While ASTM and ISO methods provide detailed test procedures, CIE provides the underlying mathematical framework.

Complementary Use With Additional Standards

CIE 15.2 works best when used alongside application-specific standards. You can combine it with ASTM E308 for computing colorimetric values to create comprehensive testing protocols.

The CIE standard provides the spectral power distributions of standard illuminants (D65, A, etc.) that are referenced in other test methods. When performing transmission or haze tests, you’ll need both the fundamental CIE definitions and the procedural details from ASTM or ISO methods.

Many industries require multiple standards for complete compliance. For example, automotive glazing tests might require CIE 15.2 for the photometric definitions, ASTM D1003 for the haze measurement procedure, and ISO 9050 for solar transmission properties.

This multi-standard approach ensures both scientific validity and practical applicability in your testing protocols.

Frequently Asked Questions

CIE 15.2 provides essential guidance for photometric measurements in haze and transmission tests. These standards help ensure consistent and reliable results across different testing environments and applications.

What are the objectives of ASTM test method related to CIE 15.2 in terms of evaluating photometric quantities?

The primary objective is to establish standardized methods for measuring how materials transmit, scatter, or absorb light. This standardization helps evaluate material clarity, transparency, and optical properties with consistency.

The test method aims to quantify visual perception using V(λ) weighting, which models human eye sensitivity to different wavelengths of light. This allows for measurements that correlate with human visual experience.

Another key objective is to provide repeatable and reproducible results that can be compared across different laboratories and testing facilities worldwide.

Can you describe the general principles that guide the CIE 15.2 standard for haze and transmission tests?

The CIE 15.2 standard is based on the principle that human visual perception varies with wavelength. The V(λ) function represents the standard observer’s sensitivity to light at different wavelengths.

Light transmission measurements are weighted according to this V(λ) function to match human visual perception. This means that wavelengths to which the human eye is more sensitive have greater influence on the final measurement.

The standard defines specific illumination conditions, viewing geometries, and measurement techniques to ensure consistency. These controlled conditions allow for meaningful comparisons between different materials and products.

Why is the CIE 15.2 standard significant to industries, and what applications does it have in material testing?

The standard is crucial for manufacturers of transparent and translucent materials like glass, plastics, and films. It helps ensure products meet visual quality requirements and regulatory specifications.

In the automotive industry, these tests evaluate windshields and windows for clarity and safety. Poor optical properties can cause visual distortions that might affect driver visibility.

For packaging materials, the standard helps measure transparency needed for product display. Food, beverage, and retail packaging often require specific levels of clarity and light transmission.

The construction industry relies on these measurements when selecting glazing materials. Energy efficiency, visual comfort, and aesthetic considerations all depend on accurate photometric testing.

How do the results of the CIE 15.2 photometric test affect decision-making in product development and quality control?

Test results directly influence material selection during product design phases. Engineers can choose materials that provide the optimal balance of clarity, light diffusion, and other optical properties.

Quality control departments use these measurements as pass/fail criteria. Products that don’t meet established photometric specifications can be identified and removed from production.

The data helps manufacturers optimize processing conditions. Temperature, pressure, and other variables in production can be adjusted to achieve desired optical characteristics.

These measurements also support compliance with industry standards and regulations. Many building codes, automotive safety standards, and consumer product regulations specify minimum photometric performance criteria.

What are some best practices to ensure accurate results when implementing the CIE 15.2 photometric test method?

Regular calibration of your photometric equipment is essential. Use certified reference materials with known values to verify your system’s accuracy.

Control the testing environment carefully. Ambient light, temperature fluctuations, and dust can all affect measurement accuracy.

Prepare samples consistently according to the standard specifications. Sample thickness, surface preparation, and handling procedures should remain uniform across tests.

Train operators thoroughly on both the theory and practical aspects of the test. Understanding the principles behind the measurements helps technicians recognize when results might be questionable.

Document all test conditions and procedural details. This information is crucial for troubleshooting unexpected results and ensuring test reproducibility.

In what ways does the CIE 15.2 standard differ from other photometric test methods, and why might one be chosen over another?

CIE 15.2 specifically incorporates the V(λ) weighting function, while some other methods measure absolute light transmission without this human vision adjustment. When correlation with visual perception is important, CIE 15.2 is preferred.

The standard focuses on integrated measurements across the visible spectrum. Other methods might analyze specific wavelengths or spectral regions separately.

CIE 15.2 is internationally recognized, making it ideal for global markets. Regional standards might be preferred when testing products for specific local regulations.

The equipment requirements for CIE 15.2 testing can be more sophisticated than simpler transmission tests. Budget constraints or application needs might lead to choosing alternative methods.

Um QUALTECH PRODUCTS INDUSTRY Science & Research

Was Sie als nächstes lesen können

ASTM D1003 Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics: Essential Applications and Industry Significance
DIN EN 12047 Solid Fertilizers – Measurement of Static Angle of Repose: Essential Test for Quality Control and Material Handling in Fertilizer Production
MPIF Standard 01 Method for Sampling Metal Powders: Essential Testing Protocol for Quality Assurance in Powder Metallurgy Manufacturing

ERHALTEN EIN KOSTENLOSES ANGEBOT

Kontaktieren Sie uns – Wir würden uns freuen, von Ihnen zu hören

Informieren Sie sich jetzt über Produkte, technischen Support, Kundenservice, Vertrieb, Öffentlichkeitsarbeit, Professional Services und Partner. Sie können uns auch Feedback auf unserer Website geben.
Bitte füllen Sie dieses Formular aus. Einer unserer Spezialisten wird Ihre Anfrage in Kürze beantworten. Alternativ kontaktieren Sie uns über die Firmendaten in den USA, in Australien oder in Großbritannien.

    Bitte beachten Sie, dass wir Ihre Privatsphäre respektieren und Ihre Daten streng vertraulich behandeln.

    ASTM
    ANSI
    bsi
    IEC
    AATCC
    TÜV
    ISO
    LÄRM

    © 1978 - 2025 QUALTECH PRODUCTS INDUSTRY Nutzungsbedingungen Terms & amp; Bedingungen Kekse Kontaktiere uns

    OBEN
    Diese Website verwendet Cookies, um Ihr Erlebnis zu verbessern. Wir respektieren jedoch Ihre Privatsphäre und die Cookies sammeln nur anonyme Daten. Wir respektieren Ihre Privatsphäre und Sie können sich abmelden, wenn Sie möchten.
    Cookie-EinstellungenAkzeptiere alle
    Einwilligung verwalten

    Datenschutzübersicht

    Diese Website verwendet Cookies, um Ihre Erfahrung zu verbessern, während Sie durch die Website navigieren. Von diesen werden die als notwendig eingestuften Cookies auf Ihrem Browser gespeichert, da sie für das Funktionieren grundlegender Funktionalitäten der Website unerlässlich sind. Wir verwenden auch Cookies von Drittanbietern, die uns helfen zu analysieren und zu verstehen, wie Sie diese Website nutzen. Diese Cookies werden nur mit Ihrer Zustimmung in Ihrem Browser gespeichert. Sie haben auch die Möglichkeit, diese Cookies abzulehnen. Das Ablehnen einiger dieser Cookies kann jedoch Ihr Surferlebnis beeinträchtigen.
    Notwendig
    immer aktiv
    Notwendige Cookies sind unbedingt erforderlich, damit die Website ordnungsgemäß funktioniert. Diese Cookies gewährleisten anonym grundlegende Funktionen und Sicherheitsmerkmale der Website.
    PlätzchenDauerBeschreibung
    Cookielawinfo-Checkbox-Analyse11 MonateDieses Cookie wird vom GDPR Cookie Consent Plugin gesetzt. Das Cookie wird verwendet, um die Benutzereinwilligung für die Cookies in der Kategorie "Analytics" zu speichern.
    Cookielawinfo-Kontrollkästchen-funktional11 MonateDas Cookie wird durch die GDPR-Cookie-Zustimmung gesetzt, um die Zustimmung des Benutzers für die Cookies der Kategorie "Funktional" zu erfassen.
    Cookielawinfo-Checkbox-Notwendig11 MonateDieses Cookie wird vom GDPR Cookie Consent Plugin gesetzt. Die Cookies werden verwendet, um die Einwilligung des Benutzers für die Cookies in der Kategorie "Notwendig" zu speichern.
    Cookielawinfo-Checkbox-Andere11 MonateDieses Cookie wird vom GDPR Cookie Consent Plugin gesetzt. Das Cookie wird verwendet, um die Benutzereinwilligung für die Cookies in der Kategorie "Sonstige" zu speichern.
    Cookielawinfo-Checkbox-Leistung11 MonateDieses Cookie wird vom GDPR Cookie Consent Plugin gesetzt. Das Cookie wird verwendet, um die Benutzereinwilligung für die Cookies in der Kategorie "Leistung" zu speichern.
    Gesehene Cookie-Richtlinie11 MonateDas Cookie wird vom GDPR Cookie Consent Plugin gesetzt und wird verwendet, um zu speichern, ob der Benutzer der Verwendung von Cookies zugestimmt hat oder nicht. Es werden keine personenbezogenen Daten gespeichert.
    Funktionalität
    Funktionale Cookies helfen dabei, bestimmte Funktionen auszuführen, z. B. den Inhalt der Website auf Social Media-Plattformen zu teilen, Feedbacks zu sammeln und andere Funktionen von Drittanbietern.
    Leistung
    Leistungscookies werden verwendet, um die wichtigsten Leistungsindizes der Website zu verstehen und zu analysieren, um den Besuchern ein besseres Benutzererlebnis zu bieten.
    Analyse
    Analytische Cookies werden verwendet, um zu verstehen, wie Besucher mit der Website interagieren. Diese Cookies helfen dabei, Informationen über Metriken wie Besucherzahl, Absprungrate, Verkehrsquelle usw. zu liefern.
    Werbung
    Werbe-Cookies werden verwendet, um Besuchern relevante Anzeigen und Marketingkampagnen bereitzustellen. Diese Cookies verfolgen Besucher auf verschiedenen Websites und sammeln Informationen, um angepasste Anzeigen bereitzustellen.
    Andere
    Andere nicht kategorisierte Cookies sind solche, die analysiert werden und noch nicht in eine Kategorie eingestuft wurden.
    SPEICHERN & AKZEPTIEREN
    de_DEDeutsch
    en_USEnglish da_DKDansk elΕλληνικά es_ESEspañol es_MXEspañol de México fiSuomi fr_FRFrançais fr_CAFrançais du Canada it_ITItaliano nl_NLNederlands sv_SESvenska pt_PTPortuguês de_DEDeutsch
    en_US English
    en_US English
    da_DK Dansk
    de_DE Deutsch
    el Ελληνικά
    es_ES Español
    es_MX Español de México
    fi Suomi
    fr_FR Français
    fr_CA Français du Canada
    it_IT Italiano
    nl_NL Nederlands
    sv_SE Svenska
    pt_PT Português